Earth’s magnetic field ‘simpler than we thought’
Scientists have identified patterns in the Earth’s magnetic field that evolve on the order of 1,000 years, providing new insight into how the field works and adding a measure of predictability to changes in the field not previously known.
The discovery also will allow researchers to study the planet’s past with finer resolution by using this geomagnetic “fingerprint” to compare sediment cores taken from the Atlantic and Pacific oceans.
Results of the research, which was supported by the National Science Foundation, were recently published in Earth and Planetary Science Letters.
The geomagnetic field is critical to life on Earth. Without it, charged particles from the sun (the “solar wind”) would blow away the atmosphere, scientists say. The field also aids in human navigation and animal migrations in ways scientists are only beginning to understand.
Centuries of human observation, as well as the geologic record, show our field changes dramatically in its strength and structure over time.
Yet in spite of its importance, many questions remain unanswered about why and how these changes occur. The simplest form of magnetic field comes from a dipole: a pair of equally and oppositely charged poles, like a bar magnet.
“We’ve known for some time that the Earth is not a perfect dipole, and we can see these imperfections in the historical record,” said Maureen “Mo” Walczak, a post-doctoral researcher at Oregon State University and lead author on the study. “We are finding that non-dipolar structures are not evanescent, unpredictable things. They are very long-lived, recurring over 10,000 years - persistent in their location throughout the Holocene.
"This is something of a Holy Grail discovery,” she added, “though it is not perfect. It is an important first step in better understanding the magnetic field, and synchronizing sediment core data at a finer scale.” Some 800,000 years ago, a magnetic compass’ needle would have pointed south because the Earth’s magnetic field was reversed. These reversals typically happen every several hundred thousand years.
While scientists are well aware of the pattern of reversals in the Earth’s magnetic field, a secondary pattern of geomagnetic “wobble” within periods of stable polarity, known as paleomagnetic secular variation, or PSV, may be a key to understanding why some geomagnetic changes occur.
The Earth’s magnetic field does not align perfectly with the axis of rotation, which is why “true north” differs from “magnetic north,” the researchers say. In the Northern Hemisphere this disparity in the modern field is apparently driven by regions of high geomagnetic intensity that are centered beneath North America and Asia.
“What we have not known is whether this snapshot has any longer-term meaning - and what we have found out is that it does,” said Joseph Stoner, an Oregon State University paleomagnetic specialist and co-author on the study.
When the magnetic field is stronger beneath North America, or in the “North American Mode,” it drives steep inclinations and high intensities in the North Pacific, and low intensities in Europe with westward declinations in the North Atlantic. This is more consistent with the historical record.
The alternate “European mode” is in some ways the opposite, with shallow inclination and low intensity in North Pacific, and eastward declinations in the North Atlantic and high intensities in Europe.
“As it turns out, the magnetic field is somewhat less complicated than we thought,” Stoner said. “It is a fairly simple oscillation that appears to result from geomagnetic intensity variations at just a few recurrent locations with large spatial impacts. We’re not yet sure what drives this variation, though it is likely a combination of factors including convection of the outer core that may be biased in configuration by the lowermost mantle.”
The researchers were able to identify the pattern by studying two high-resolution sediment cores from the Gulf of Alaska that allowed them to develop a 17,400-year reconstruction of the PSV in that region. They then compared those records with sediment cores from other sites in the Pacific Ocean to capture a magnetic fingerprint, which is based on the orientation of the magnetite in the sediment, which acts as a magnetic recorder of the past.
The common magnetic signal found in the cores now covers an area spanning from Alaska to Oregon, and over to Hawaii.
“Magnetic alignment of distant environmental reconstructions using reversals in the paleomagnetic record provides insights into the past on a scale of hundreds of thousands of years,” Walczak said. “Development of the coherent PSV stratigraphy will let us look at the record on a scale possibly as short as a few centuries, compare events between ocean basins, and really get down to the nitty-gritty of how climate anomalies are propagated around the planet on a scale relevant to human society.”
The magnetic field is generated within the Earth by a fluid outer core of iron, nickel and other metals that creates electric currents, which in turn produce magnetic fields. The magnetic field is strong enough to shield the Earth from solar winds and cosmic radiation. The fact that it changes is well known; the reasons why have remained a mystery. Now this mystery may be a little closer to being solved.
After seven years of studying the radiation around Earth, the Van Allen Probes spacecraft have retired.
Originally slated for a two-year mission, these two spacecraft studied Earth’s radiation belts — giant, donut-shaped clouds of particles surrounding Earth — for nearly seven years. The mission team used the last of their propellant this year to place the spacecraft into a lower orbit that will eventually decay, allowing the Van Allen Probes to re-enter and burn up in Earth’s atmosphere.
Earth’s radiation belts exist because energized charged particles from the Sun and other sources in space become trapped in our planet’s huge magnetic field, creating vast regions around Earth that teem with radiation. This is one of the harshest environments in space — and the Van Allen Probes survived more than three times longer than planned orbiting through this intense region.
The shape, size and intensity of the radiation belts change, meaning that satellites — like those used for telecommunications and GPS — can be bombarded with a sudden influx of radiation. The Van Allen Probes shed new light on what invisible forces drive these changes — like waves of charged particles and electromagnetic fields driven by the Sun, called space weather.
Here are a few scientific highlights from the Van Allen Probes — from the early days of the mission to earlier this year:
The Van Allen belts were first discovered in 1958, and for decades, scientists thought there were only two concentric belts. But, days after the Van Allen Probes launched, scientists discovered that during times of intense solar activity, a third belt can form.
The belts are composed of charged particles and electromagnetic fields and can be energized by different types of plasma waves. One type, called electrostatic double layers, appear as short blips of enhanced electric field. During one observing period, Probe B saw 7,000 such blips repeatedly pass over the spacecraft in a single minute!
During big space weather storms, which are ultimately caused by activity on the Sun, ions — electrically charged atoms or molecules — can be pushed deep into Earth’s magnetosphere. These particles carry electromagnetic currents that circle around the planet and can dramatically distort Earth’s magnetic field.
Across space, fluctuating electric and magnetic fields can create what are known as plasma waves. These waves intensify during space weather storms and can accelerate particles to incredible speeds. The Van Allen Probes found that one type of plasma wave known as hiss can contribute greatly to the loss of electrons from the belts.
The Van Allen belts are composed of electrons and ions with a range of energies. In 2015, research from the Van Allen Probes found that, unlike the outer belt, there were no electrons with energies greater than a million electron volts in the inner belt.
Plasma waves known as whistler chorus waves are also common in our near-Earth environment. These waves can travel parallel or at an angle to the local magnetic field. The Van Allen Probes demonstrated the two types of waves cannot be present simultaneously, resulting in greater radiation belt particle scattering in certain areas.
Very low frequency chorus waves, another variety of plasma waves, can pump up the energy of electrons to millions of electronvolts. During storm conditions, the Van Allen Probes found these waves can hugely increase the energy of particles in the belts in just a few hours.
Scientists often use computer simulation models to understand the physics behind certain phenomena. A model simulating particles in the Van Allen belts helped scientists understand how particles can be lost, replenished and trapped by Earth’s magnetic field.
The Van Allen Probes observed several cases of extremely energetic ions speeding toward Earth. Research found that these ions’ acceleration was connected to their electric charge and not to their mass.
The Sun emits faster and slower gusts of charged particles called the solar wind. Since the Sun rotates, these gusts — the fast wind — reach Earth periodically. Changes in these gusts cause the extent of the region of cold ionized gas around Earth — the plasmasphere — to shrink. Data from the Van Allen Probes showed that such changes in the plasmasphere fluctuated at the same rate as the solar rotation — every 27 days.
Though the mission has ended, scientists will use data from the Van Allen Probes for years to come. See the latest Van Allen Probes science at nasa.gov/vanallen.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The ability to see Earth’s magnetic field, known as magnetoreception, relies on the presence of specifically the blue wavelength of light. The complex process involves “radical” intermediate molecules which are sensitive to Earth’s magnetic field. The Earth’s magnetic field, as it relates to the direction the bird is facing, could alter the intermediate radical molecules differently, giving the bird a sense for where it is facing in relation to the Earth’s magnetic field.
While the exact way birds visualize Earth’s magnetic field is part of further investigation, scientists believe the Cry4 protein acts as sort of a filter over the bird’s vision. This filter would allow birds to see a sort of compass of the Earth and direct their migratory flights accordingly.
Source: Forbes
See the aurora and the magnetic field.
Magnetic Field