đĄ
Walt Whitman "I sing the body electric"
I have perceivâd that to be with those I like is enough, To stop in company with the rest at evening is enough, To be surrounded by beautiful, curious, breathing, laughing flesh is enough, To pass among them or touch any one, or rest my arm ever so lightly round his or her neck for a moment, what is this then? I do not ask any more delight, I swim in it as in a sea.
Happy New Year! And happy supermoon! Tonight, the Moon will appear extra big and bright to welcome us into 2018 â about 6% bigger and 14% brighter than the average full Moon. And how do we know that? Well, each fall, our science visualizer Ernie Wright uses data from the Lunar Reconnaissance Orbiter (LRO) to render over a quarter of a million images of the Moon. He combines these images into an interactive visualization, Moon Phase and Libration, which depicts the Moon at every day and hour for the coming year.Â
Want to see what the Moon will look like on your birthday this year? Just put in the date, and even the hour (in Universal Time) you were born to see your birthday Moon.
Our Moon is quite dynamic. In addition to Moon phases, our Moon appears to get bigger and smaller throughout the year, and it wobbles! Or at least it looks that way to us on Earth. This wobbling is called libration, from the Latin for âbalance scaleâ (libra). Wright relies on LRO maps of the Moon and NASA orbit calculations to create the most accurate depiction of the 6 ways our Moon moves from our perspective.
The Moon phases we see on Earth are caused by the changing positions of the Earth and Moon relative to the Sun. The Sun always illuminates half of the Moon, but we see changing shapes as the Moon revolves around the Earth. Wright uses a software library called SPICE to calculate the position and orientation of the Moon and Earth at every moment of the year. With his visualization, you can input any day and time of the year and see what the Moon will look like!
Check out that crater detail! The Moon is not a smooth sphere. Itâs covered in mountains and valleys and thanks to LRO, we know the shape of the Moon better than any other celestial body in the universe. To get the most accurate depiction possible of where the sunlight falls on the lunar surface throughout the month, Wright uses the same graphics software used by Hollywood design studios, including Pixar, and a method called âraytracingâ to calculate the intricate patterns of light and shadow on the Moonâs surface, and he checks the accuracy of his renders against photographs of the Moon he takes through his own telescope.
The Moon Phase and Libration visualization shows you the apparent size of the Moon. The Moonâs orbit is elliptical, instead of circular - so sometimes it is closer to the Earth and sometimes it is farther. Youâve probably heard the term âsupermoon.â This describes a full Moon at or near perigee (the point when the Moon is closest to the Earth in its orbit). A supermoon can appear up to 14% bigger and brighter than a full Moon at apogee (the point when the Moon is farthest from the Earth in its orbit).Â
Our supermoon tonight is a full Moon very close to perigee, and will appear to be about 14% bigger than the July 27 full Moon, the smallest full Moon of 2018, occurring at apogee. Input those dates into the Moon Phase and Libration visualization to see this difference in apparent size!
Over a month, the Moon appears to nod, twist, and roll. The east-west motion, called âlibration in longitudeâ, is another effect of the Moonâs elliptical orbital path. As the Moon travels around the Earth, it goes faster or slower, depending on how close it is to the Earth. When the Moon gets close to the Earth, it speeds up thanks to an additional pull from Earthâs gravity. Then it slows down, when itâs farther from the Earth. While this speed in orbital motion changes, the rotational speed of the Moon stays constant.Â
This means that when the Moon moves faster around the Earth, the Moon itself doesnât rotate quite enough to keep the same exact side facing us and we get to see a little more of the eastern side of the Moon. When the Moon moves more slowly around the Earth, its rotation gets a little ahead, and we see a bit more of its western side.
The Moon also appears to nod, as if it were saying âyes,â a motion called âlibration in latitudeâ. This is caused by the 5 degree tilt of the Moonâs orbit around the Earth. Sometimes the Moon is above the Earthâs northern hemisphere and sometimes itâs below the Earthâs southern hemisphere, and this lets us occasionally see slightly more of the northern or southern hemispheres of the Moon!Â
Finally, the Moon appears to tilt back and forth like a metronome. The tilt of the Moonâs orbit contributes to this, but itâs mostly because of the 23.5 degree tilt of our own observing platform, the Earth. Imagine standing sideways on a ramp. Look left, and the ramp slopes up. Look right and the ramp slopes down.Â
Now look in front of you. The horizon will look higher on the right, lower on the left (try this by tilting your head left). But if you turn around, the horizon appears to tilt the opposite way (tilt your head to the right). The tilted platform of the Earth works the same way as we watch the Moon. Every two weeks we have to look in the opposite direction to see the Moon, and the ground beneath our feet is then tilted the opposite way as well.
So put this all together, and you get this:
Beautiful isnât it? See if you can notice these phenomena when you observe the Moon. And keep coming back all year to check on the Moonâs changing appearance and help plan your observing sessions.
Follow @NASAMoon on Twitter to keep up with the latest lunar updates.Â
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Pencil Nebula
(Credit: ESO)
đ
Arresto temporale