Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts
Concerning the new telescope -out of curiosity- what is the maximum distance it can view planets, galaxies, objects, anything up to -in terms of common/metric measurement, and/or years (if applicable) etc.? -Rose
What does “chemical fingerprints” mean? What chemicals indicate possible life on other planets?
Will the James Webb Telescope also be able to spot out signs of life on habitable worlds?
Questions coming up from….
@maybeinanotherworld: JWST IS HAPPENING! How are all of you feeling about this?
@Anonymous: How powerful is this telescope, exactly?
@Anonymous: Why are the mirrors on it yellow?
@foeofcolor: How long is this estimated to last for? Like how long will it be able to function in space by estimates?
Who's ready to #UnfoldTheUniverse? The James Webb Space Telescope Answer Time with expert Dr. Naomi Rowe-Gurney is LIVE! Stay tuned for talks about the science goals, capabilities, and hopes for the world's most powerful telescope. View ALL the answers HERE.
Make sure to follow us on Tumblr for your regular dose of space!
Think X-ray vision is a superpower found only in comics and movies? Unlike Superman and Supergirl, NASA has it for real, thanks to the X-ray observatories we’ve sent into orbit.
Now the Imaging X-ray Polarimetry Explorer – IXPE for short – has shot into space to enhance our superpower!
Meet IXPE
When dentists take X-ray pictures of a tooth, they use a machine that makes X-rays and captures them on a device placed on the opposite side. But X-rays also occur naturally. In astronomy, we observe X-rays made by distant objects to learn more about them.
IXPE will improve astronomers’ knowledge about some of these objects, like black holes, neutron stars, and the expanding clouds made by supernova explosions.
That’s because it will capture a piece of information about X-ray light that has only rarely been measured from space!
X-ray astronomers have learned a lot about the cosmos by measuring three properties of light – when it arrives, where it’s coming from, and what energies it has (think: colors). Picture these characteristics as making up three of the four sides of a pyramid. The missing piece is a property called polarization.
Polarization tells us how organized light is. This gives astronomers additional clues about how the X-rays were made and what matter they’ve passed through on their way to us. IXPE will explore this previously hidden side of cosmic X-ray sources.
What is polarization?
All light, from microwaves to gamma rays, is made from pairs of waves traveling together – one carrying electricity and the other magnetism. These two waves always vibrate at right angles (90°) to each other, with their peaks and valleys in sync, and they also vibrate at right angles to their direction of motion.
To keep things simple, we’ll illustrate only one of these waves – the one carrying electricity. If we could zoom into a typical beam of light, we’d see something like the animation above. It’s a mess, with all the wave peaks pointing in random directions.
When light interacts with matter, it can become better organized. Its electric field can vibrate in a way that keeps all the wave crests pointing in the same direction, as shown above. This is polarized light.
The amount and type of polarization we detect in light tell us more about its origin, as well as any matter it interacted with before reaching us.
Let’s look at the kinds of objects IXPE will study and what it may tell us about them.
Exploring star wrecks
Exploded stars create vast, rapidly expanding clouds called supernova remnants – like the Jellyfish Nebula above. It formed 4,000 years ago, but even today, the remnant’s heart can tell us about the extreme conditions following the star’s explosion.
X-rays give us a glimpse of the powerful processes at work during and after these explosions. IXPE will map remnants like this, revealing how X-rays are polarized across the entire object. This will help us better understand how these celestial cataclysms take place and evolve.
Magnifying supermagnets
Some supernovae leave behind neutron stars. They form when the core of a massive star collapses, squeezing more than our Sun’s mass into a ball only as wide as a city.
The collapse greatly ramps up their spin. Some neutron stars rotate hundreds of times a second! Their magnetic fields also get a tremendous boost, becoming trillions of times stronger than Earth’s. One type, called a magnetar, boasts the strongest magnetic fields known – a thousand times stronger than typical neutron stars.
These superdense, superspinning supermagnets frequently erupt in powerful outbursts (illustrated above) that emit lots of X-rays. IXPE will tell astronomers more about these eruptions and the extreme magnetic fields that help drive them.
Closing in on black holes
Black holes can form when massive stars collapse or when neutron stars crash together. Matter falling toward a black hole quickly settles into a hot, flat structure called an accretion disk. The disk’s inner edge gradually drains into the black hole. Notice how odd the disk appears from certain angles? This happens because the black hole’s extreme gravity distorts the path of light coming from the disk’s far side.
X-rays near the black hole can bounce off the disk before heading to our telescopes, and this polarizes the light. What’s exciting is that the light is polarized differently across the disk. The differences depend both on the energies of the X-rays and on what parts of the disk they strike. IXPE observations will provide astronomers with a detailed picture of what’s happening around black holes in our galaxy that can’t be captured in any other way.
By tracking how X-ray light is organized, IXPE will add a previously unseen dimension to our X-ray vision. It’s a major upgrade that will give astronomers a whole new perspective on some of the most intriguing objects in the universe.
Keep up with what’s happening in the universe and how we study it by following NASA Universe on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space!
Pew. Pew. Lasers in space!
Iconic movie franchises like Star Wars and Star Trek feature futuristic laser technologies, but space lasers aren’t limited to the realm of science fiction. In fact, laser communications technologies are changing the way missions transmit their data. The Laser Communications Relay Demonstration (LCRD) blasts into space this weekend, demonstrating the unique – and totally awesome – capabilities of laser communications systems.
Currently, NASA missions rely on radio frequency to send data to Earth. While radio has served the agency well since the earliest days of spaceflight, there are significant benefits to laser systems. Just as the internet has gone from dial-up to high-speed connections, lasers communications’ higher frequency allows missions to send much more information per second than radio systems. With laser communications, it would only take nine days to transmit a complete map of Mars back to Earth, compared to nine weeks with radio frequency systems.
LCRD will demonstrate these enhanced capabilities from 22,000 miles above Earth’s surface. And although the mission uses lasers, these lasers are not visible to the human eye. Once in orbit, the mission will perform experiments using two telescopes on Earth that will relay data through the spacecraft from one site to the other over an optical communications link. These experiments will help NASA and the aerospace community understand the operational challenges of using lasers to communicate to and from space.
On Earth, there are ground stations telescopes that will capture LCRD’s laser signal and send the data to the mission operations center in New Mexico. The two ground stations are located on Haleakalā, Hawaii and Table Mountain, California. These picturesque locations weren’t chosen because they’re beautiful, but rather for their mostly clear skies. Clouds – and other atmospheric disturbances – can disrupt laser signals. However, when those locations do get cloudy, we’ve developed corrective technologies to ensure we receive and successfully decode signals from LCRD.
This demonstration will help NASA, researchers, and space companies learn more about potential future applications for laser communications technologies. In the next few years, NASA will launch additional laser missions to the Moon on Artemis II and to the asteroid belt, even deeper into space. These missions will give us insight on the use of laser communications further in space than ever before.
Ultimately, laser systems will allow us to glean more information from space. This means more galaxy pics, videos of deep space phenomena, and live, 4K videos from astronauts living and working in space.
Laser communications = more data in less time = more discoveries.
If laser communications interests you, check out our Space Communications and Navigation (SCaN) Internship Project. This program provides high school, undergrad, graduate, and even Ph.D. candidates with internship opportunities in space communications areas – like laser comm.
Make sure to follow us on Tumblr for your regular dose of space!
The James Webb Space Telescope is launching on December 22, 2021. Webb’s revolutionary technology will explore every phase of cosmic history—from within our solar system to the most distant observable galaxies in the early universe, to everything in between. Postdoctoral Research Associate Naomi Rowe-Gurney will be taking your questions about Webb and Webb science in an Answer Time session on Tuesday, December 14 from noon to 1 p.m EST here on our Tumblr!
🚨 Ask your questions now by visiting http://nasa.tumblr.com/ask.
Dr. Naomi Rowe-Gurney recently completed her PhD at the University of Leicester and is now working at NASA Goddard Space Flight Center as a postdoc through Howard University. As a planetary scientist for the James Webb Space Telescope, she’s an expert on the atmospheres of the ice giants in our solar system — Uranus and Neptune — and how the Webb telescope will be able to learn more about them.
Webb is so big it has to fold origami-style to fit into its rocket and will unfold like a “Transformer” in space.
Webb is about 100 times more powerful than the Hubble Space Telescope and designed to see the infrared, a region Hubble can only peek at.
With unprecedented sensitivity, it will peer back in time over 13.5 billion years to see the first galaxies born after the Big Bang––a part of space we’ve never seen.
It will study galaxies near and far, young and old, to understand how they evolve.
Webb will explore distant worlds and study the atmospheres of planets orbiting other stars, known as exoplanets, searching for chemical fingerprints of possible habitability.
Make sure to follow us on Tumblr for your regular dose of space!
Suspended in space, the stars that reside in the Orion Nebula are scattered throughout a dramatic dust-and-gas landscape of plateaus, mountains, and valleys that are reminiscent of the Grand Canyon. This visualization uses visible and infrared views, combining images from the Hubble Space Telescope and the Spitzer Space Telescope to create a three-dimensional visualization.
Learn more about Hubble’s celebration of Nebula November and see new nebula images, here.
You can also keep up with Hubble on Twitter, Instagram, Facebook, and Flickr!
Visualization credits: NASA, ESA, and F. Summers, G. Bacon, Z. Levay, J. DePasquale, L. Hustak, L. Frattare, M. Robberto, M. Gennaro (STScI), R. Hurt (Caltech/IPAC), M. Kornmesser (ESA); Acknowledgement: A. Fujii, R. Gendler
See that tiny blob of light, circled in red? Doesn’t look like much, does it? But that blob represents a feast big enough to feed a black hole around 30 million times the mass of our Sun! Scientists call these kinds of stellar meals tidal disruption events, and they’re some of the most dramatic happenings in the cosmos.
Sometimes, an unlucky star strays too close to a black hole. The black hole’s gravity pulls on the star, causing it to stretch in one direction and squeeze in another. Then the star pulls apart into a stream of gas. This is a tidal disruption event. (If you’re worried about this happening to our Sun – don’t. The nearest black hole we know about is over 1,000 light-years away. And black holes aren’t wild space vacuums. They don’t go zipping around sucking up random stars and planets. So we’re pretty safe from tidal disruption events!)
The trailing part of the stream gets flung out of the system. The rest of the gas loops back around the black hole, forming a disk. The material circling in the disk slowly drifts inward toward the black hole’s event horizon, the point at which nothing – not even light – can escape. The black hole consumes the gas and dust in its disk over many years.
Sometimes the black hole only munches on a passing star – we call this a partial tidal disruption event. The star loses some of its gas, but its own gravity pulls it back into shape before it passes the black hole again. Eventually, the black hole will have nibbled away enough material that the star can’t reform and gets destroyed.
We study tidal disruptions, both the full feasts and the partial snacks, using many kinds of telescopes. Usually, these events are spotted by ground-based telescopes like the Zwicky Transient Facility and the All-Sky Automated Survey for Supernovae network.
They alert other ground- and space-based telescopes – like our Neil Gehrels Swift Observatory (illustrated above) and the European Space Agency’s XMM-Newton – to follow up and collect more data using different wavelengths, from visible light to X-rays. Even our planet-hunting Transiting Exoplanet Survey Satellite has observed a few of these destructive wonders!
We’re also studying disruptions using multimessenger astronomy, where scientists use the information carried by light, particles, and space-time ripples to learn more about cosmic objects and occurrences.
But tidal disruptions are super rare. They only happen once every 10,000 to 100,000 years in a galaxy the size of our own Milky Way. Astronomers have only observed a few dozen events so far. By comparison, supernovae – the explosive deaths of stars – happen every 100 years or so in a galaxy like ours.
That’s why scientists make their own tidal disruptions using supercomputers, like the ones shown in the video here. Supercomputers allow researchers to build realistic models of stars. They can also include all of the physical effects they’d experience whipping ‘round a black hole, even those from Einstein’s theory of general relativity. They can alter features like how close the stars get and how massive the black holes are to see how it affects what happens to the stars. These simulations will help astronomers build better pictures of the events they observe in the night sky.
Keep up with what’s happening in the universe and how we study it by following NASA Universe on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space!
If you’ve eaten a piece of fruit, a vegetable, or a handful of nuts in the past week, it’s very likely they all came from “America’s Salad Bowl.” California’s Central Valley and Central Coast is where more than one-third of all vegetables in the U.S. are grown––and two-thirds of our fruits and nuts.
Keeping this area fertile takes a lot of water, and we provide farmers with NASA data that helps them manage increasingly scarce supplies. Working with farmers and conservation groups, we developed a new website called OpenET to transform how water is managed in the West! It covers 17 western U.S. states, putting satellite and other Earth science data into their hands. The website gives them daily and monthly views of water usage, down to the resolution of a single field of vegetables.
The ET in OpenET doesn’t stand for extraterrestrial, but “evapotranspiration.” Evapotranspiration is a measurement that farmers can use to estimate the amount of water being used by their fields and crops. This water will usually need to be replaced through irrigation or rainfall.
We work closely with partners and people around the world, connecting them with NASA Earth data to solve our planet’s most pressing issues.
Learn more about our Applied Sciences program, here! We are Earth. Science. Action.
Make sure to follow us on Tumblr for your regular dose of space!
Nicknamed the Cosmic Reef because it resembles an undersea world, this is a vast star-forming region in the Large Magellanic Cloud, a satellite galaxy of the Milky Way.
Released in April 2020 to celebrate the Hubble Space Telescope’s 30th anniversary, the reef showcases the beauty and mystery of space in this complex image of starbirth. Throughout its decades of discoveries, Hubble has yielded over 1.5 million observations, providing data that astronomers around the world have used to write more than 18,000 peer-reviewed scientific publications, making it the most prolific space observatory in history.
Learn more about Hubble’s celebration of Nebula November and see new nebula images, here.
You can also keep up with Hubble on Twitter, Instagram, Facebook, and Flickr!
Image credits: NASA, ESA, and STScI
These three towers are only a small portion of the massive Eagle Nebula.
Known as the “Pillars of Creation,” the beautiful tendrils of cosmic dust and gas are giving birth to new stars, buried within their spires. This iconic image only shows a stretch of about four or five light-years … while the whole nebula itself spans about 70 by 55 light-years.
Learn more about Hubble’s celebration of Nebula November and see new nebula images, here.
You can also keep up with Hubble on Twitter, Instagram, Facebook, and Flickr!
Image credits: NASA, ESA and the Hubble Heritage Team (STScI/AURA)
The Butterfly Nebula, created by a dying star, was captured by the Hubble Space Telescope in this spectacular image. Observations were taken over a more complete spectrum of light, helping researchers better understand the “wings'' of gas bursting out from its center. The nebula’s dying central star has become exceptionally hot, shining ultraviolet light brightly over the butterfly’s wings and causing the gas to glow.
Learn more about Hubble’s celebration of Nebula November and see new nebula images, here.
You can also keep up with Hubble on Twitter, Instagram, Facebook, and Flickr!
Image credits: NASA, ESA, and J. Kastner (RIT)
The stunning Veil Nebula was created after a star about 20 times the mass of the Sun lived fast and died young – exploding in a cataclysmic release of energy known as a supernova.
In a violent stellar explosion roughly 10,000 years ago, shockwaves and debris created this staggeringly beautiful trail through space. The picture above shows a mosaic of six Hubble Space Telescope pictures, a small area roughly two light-years across, and only a tiny fraction of the nebula's vast 110 light-year structure.
To learn more about Hubble’s celebration of Nebula November and see new nebula images, visit our space telescope's nebula page.
You can also keep up with Hubble on Twitter, Instagram, Facebook, and Flickr!
Image credits: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)
This bone-chilling force will leave you shivering alone in terror! An unseen power is prowling throughout the cosmos, driving the universe to expand at a quickening rate. This relentless pressure, called dark energy, is nothing like dark matter, that mysterious material revealed only by its gravitational pull. Dark energy offers a bigger fright: pushing galaxies farther apart over trillions of years, leaving the universe to an inescapable, freezing death in the pitch black expanse of outer space. Download this free poster in English and Spanish and check out the full Galaxy of Horrors.
Make sure to follow us on Tumblr for your regular dose of space!
Can you hear this exoplanet screaming? As the exoplanet known as HD 80606 b approaches its star from an extreme, elliptical orbit, it suffers star-grazing torture that causes howling, supersonic winds and shockwave storms across this world beyond our solar system. Its torturous journey boils its atmosphere to a hellish 2,000 degrees Fahrenheit every 111 days, roasting both its light and dark sides. HD 80606b will never escape this scorching nightmare. Download this free poster in English and Spanish and check out the full Galaxy of Horrors.
Make sure to follow us on Tumblr for your regular dose of space!
If we could zoom waaaay out, we would see that galaxies and galaxy clusters make up large, fuzzy threads, like the strands of a giant cobweb. But we'll work our way out to that. First let's start at home and look at our planet's different cosmic communities.
Earth is one of eight planets — Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune — that orbit the Sun. But our solar system is more than just planets; it also has a lot of smaller objects.
An asteroid belt circles the Sun between Mars and Jupiter. Beyond Neptune is a doughnut-shaped region of icy objects called the Kuiper Belt. This is where dwarf planets like Pluto and Makemake are found and is likely the source of short-period comets (like Haley’s comet), which orbit the Sun in less than 200 years.
Scientists think that even farther out lies the Oort Cloud, also a likely source of comets. This most distant region of our solar system is a giant spherical shell storing additional icy space debris the size of mountains, or larger! The outer edge of the Oort Cloud extends to about 1.5 light-years from the Sun — that’s the distance light travels in a year and a half (over 9 trillion miles).
Sometimes asteroids or comets get ejected from these regions and end up sharing an orbit with planets like Jupiter or even crossing Earth’s orbit. There are even interstellar objects that have entered the inner solar system from even farther than the Oort Cloud, perhaps coming all the way from another star!
Let's zoom out to look at the whole Milky Way galaxy, which contains more than 100 billion stars. Many are found in the galaxy’s disk — the pancake-shaped part of a spiral galaxy where the spiral arms lie. The brightest and most massive stars are found in the spiral arms, close to their birth places. Dimmer, less massive stars can be found sprinkled throughout the disk. Also found throughout the spiral arms are dense clouds of gas and dust called nebulae. The Sun lies in a small spiral arm called the Orion Spur.
The Milky Way’s disk is embedded in a spherical “halo” about 120,000 light-years across. The halo is dotted with globular clusters of old stars and filled with dark matter. Dark matter doesn’t emit enough light for us to directly detect it, but we know it’s there because without its mass our galaxy doesn’t have enough gravity to hold together!
Our galaxy also has several orbiting companion galaxies ranging from about 25,000 to 1.4 million light-years away. The best known of these are the Large and Small Magellanic Clouds, which are visible to the unaided eye from Earth’s Southern Hemisphere.
The Milky Way and Andromeda, our nearest neighboring spiral galaxy, are just two members of a small group of galaxies called the Local Group. They and the other members of the group, 50 to 80 smaller galaxies, spread across about 10 million light-years.
The Local Group lies at the outskirts of an even larger structure. It is just one of at least 100 groups and clusters of galaxies that make up the Virgo Supercluster. This cluster of clusters spans about 110 million light-years!
Galaxies aren’t the only thing found in a galaxy cluster, though. We also find hot gas, as shown above in the bright X-ray light (in pink) that surrounds the galaxies (in optical light) of cluster Abell 1413, which is a picturesque member of a different supercluster. Plus, there is dark matter throughout the cluster that is only detectable through its gravitational interactions with other objects.
The Virgo Supercluster is just one of many, many other groups of galaxies. But the universe’s structure is more than just galaxies, clusters, and the stuff contained within them.
For more than two decades, astronomers have been mapping out the locations of galaxies, revealing a filamentary, web-like structure. This large-scale backbone of the cosmos consists of dark matter laced with gas. Galaxies and clusters form along this structure, and there are large voids in between.
The scientific visualizations of this “cosmic web” look a little like a spider web, but that would be one colossal spider! <shudder>
And there you have the different communities that define Earth’s place in the universe. Our tiny planet is a small speck on a crumb of that giant cosmic web!
Want to learn even more about the structures in the universe? Check out our Cosmic Distance Scale!
Make sure to follow us on Tumblr for your regular dose of space.
For the first time, astronomers may have detected an exoplanet candidate outside of the Milky Way galaxy. Exoplanets are defined as planets outside of our Solar System. All other known exoplanets and exoplanet candidates have been found in the Milky Way, almost all of them less than about 3,000 light-years from Earth.
This new result is based on transits, events in which the passage of a planet in front of a star blocks some of the star's light and produces a characteristic dip. Researchers used our Chandra X-ray Observatory to search for dips in the brightness of X-rays received from X-ray bright binaries in the spiral galaxy Messier 51, also called the Whirlpool Galaxy (pictured here). These luminous systems typically contain a neutron star or black hole pulling in gas from a closely orbiting companion star. They estimate the exoplanet candidate would be roughly the size of Saturn, and orbit the neutron star or black hole at about twice the distance of Saturn from the Sun.
This composite image of the Whirlpool Galaxy was made with X-ray data from Chandra and optical light from our Hubble Space Telescope.
Credit: X-ray: NASA/CXC/SAO/R. DiStefano, et al.; Optical: NASA/ESA/STScI/Grendler
Make sure to follow us on Tumblr for your regular dose of space!
Are we alone? How did we get here? Where are we headed?
At NASA, our mission is to explore. We visit destinations in our solar system and study worlds beyond to better understand these big questions.
We also dream. We dream of traveling to distant worlds, and what that might be like. In the video above you can see fanciful, imagined adventures to real places we’ve studied at NASA.
Check out how we created these otherworldly scenes in the video below. A NASA videographer used green screens to add motion and real people to bring life to our series of solar system and exoplanet travel posters.
Let’s dive into one example from the video. The shot of kayaking on Titan showcases the real rivers and lakes of liquid methane and ethane that slosh and flow on Saturn's largest moon. Titan's mysterious surface was revealed by our Cassini spacecraft, which also deployed the European Space Agency’s Huygens probe to the surface. The atmosphere on Titan is so thick, and the gravity so light, that with each strike of a paddle, you might be lofted above the swift current as you ride the tides through a narrow strait called the Throat of Kraken. NASA scientist Mike Malaska studies Titan and collaborated on the poster featured in the video. His research informed the artwork, and so did a hobby: kayaking. Those ultra-cold chemical seas might be even more of a challenge than shown here. Your boat might crack, or even dissolve, Malaska said.
We’ll learn more about Titan when our Dragonfly mission of dual quadcoptors — rotorcraft with eight blades each — visits the icy moon in 2034.
Our understanding of other worlds is always evolving, and sometimes we learn new details after we illustrate our science. In one of our travel posters, we show a traveler standing on the surface of exoplanet Kepler-16b with two shadows formed by the planet’s two suns. The planet does indeed orbit two stars, but with later size and mass refinements, we now think it would be hard to stand there and enjoy a binary sunset. There isn't a solid surface to stand on a gas planet, and that's what Kepler-16b now appears to be!
In addition to sharing how sublime science can be, these scenes are a reminder that there are lots of careers in the space program, not just scientist, engineer, or astronaut. A creative team at NASA’s Jet Propulsion Laboratory in Southern California produced the travel posters, originally to help share the work of NASA's Exoplanet Exploration Program. They are the result of lots of brainstorming and discussion with real NASA scientists, engineers, and expert communicators. The video versions of these spacey travel scenes were produced by visualization experts at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
All of this work is meant to inspire, and to explore the edge of possibility. It’s also an invitation. With science, we’re stepping into the future. Join us?
It’s no secret the Sun affects us here on Earth in countless ways, from causing sunburns to helping our houseplants thrive. The Sun affects other objects in space, too, like asteroids! It can keep them in place. It can move them. And it can even shape them.
Asteroids embody the story of our solar system’s beginning. Jupiter’s Trojan asteroids, which orbit the Sun on the same path as the gas giant, are no exception. The Trojans are thought to be left over from the objects that eventually formed our planets, and studying them might offer clues about how the solar system came to be.
Over the next 12 years, NASA’s Lucy mission will visit eight asteroids—including seven Trojans— to help answer big questions about planet formation and the origins of our solar system. It will take the spacecraft about 3.5 years to reach its first destination.
How does the Sun affect what Lucy might find?
Credits: Astronomical Institute of CAS/Petr Scheirich
The Sun makes up 99.8% of the solar system’s mass and exerts a strong gravitational force as a result. In the case of the Trojan asteroids that Lucy will visit, their very location in space is dictated in part by the Sun’s gravity. They are clustered at two Lagrange points. These are locations where the gravitational forces of two massive objects—in this case the Sun and Jupiter—are balanced in such a way that smaller objects (like asteroids or satellites) stay put relative to the larger bodies. The Trojans lead and follow Jupiter in its orbit by 60° at Lagrange points L4 and L5.
The Sun can move and spin asteroids with light! Like many objects in space, asteroids rotate. At any given moment, the Sun-facing side of an asteroid absorbs sunlight while the dark side sheds energy as heat. When the heat escapes, it creates an infinitesimal amount of thrust, pushing the asteroid ever so slightly and altering its rotational rate. The Trojans are farther from the Sun than other asteroids we’ve studied before, and it remains to be seen how sunlight affects their movement.
The Sun can break asteroids, too. Rocks expand as they warm and contract when they cool. This repeated fluctuation can cause them to crack. The phenomenon is more intense for objects without atmospheres, such as asteroids, where temperatures vary wildly. Therefore, even though the Trojans are farther from the Sun than rocks on Earth, they’ll likely show more signs of thermal fracturing.
Like everything in our solar system, asteroids are battered by the solar wind, a steady stream of particles, magnetic fields, and radiation that flows from the Sun. For the most part, Earth’s magnetic field protects us from this bombardment. Without magnetic fields or atmospheres of their own, asteroids receive the brunt of the solar wind. When incoming particles strike an asteroid, they can kick some material off into space, changing the fundamental chemistry of what’s left behind.
Follow along with Lucy’s journey with NASA Solar System on Instagram, Facebook, and Twitter, and be sure to tune in for the launch at 5 a.m. EDT (09:00 UTC) on Saturday, Oct. 16 at nasa.gov/live.
Make sure to follow us on Tumblr for your regular dose of space!
This GIF shows a drop of insulin solution contained by surface tension in the Ring Sheared Drop device as part of an experiment conducted aboard the International Space Station. The device pins a drop of liquid between two rings and rotates one while keeping the other stationary to create shear flow, or a difference in velocity between adjacent liquid layers. Researchers used the device to study protein aggregates called amyloid fibrils, which may be related to diseases such as Alzheimer’s, Parkinson’s, and type 2 diabetes.
Scientists investigating the mechanisms of certain diseases on Earth must contend with the forces of gravity and the interaction between liquids and solid containers. These forces differ from such interfaces in the body, such as those in arteries and brain tissue, and can affect results. The Ring Sheared Drop investigation team developed a device that uses surface tension rather than a solid container to hold liquids, something possible only in microgravity!
Fluid extracted after each run will return to Earth aboard a Dragon capsule on September 30 so researchers can determine the extent of protein fibril formation, study their structure, and compare both to what happens in ground-based controls. Results could improve the fundamental understanding of how amyloid fibrils form and are transported, as well as the effects of shear at fluid interfaces relevant to conditions in the body.
Make sure to follow us on Tumblr for your regular dose of space!
We’re launching Landsat 9 — the ninth in a series of satellite missions from NASA and the U.S. Geological Survey (USGS) that have been collecting images of our planet for almost 50 years. Follow along as we count down to launch!
A normal launch countdown starts at 10, but for Landsat 9, we’re jumping in with L-9!
There are 9 million images in the USGS/NASA Landsat archive! They’re all available for free, for use by scientists, data managers, and anyone else who’s interested. You can even download them!
Landsat 9 won’t be orbiting alone. Working together, Landsat 9 and Landsat 8 will completely image Earth every 8 days! This helps us track changes on the planet’s surface as they happen in near-real-time.
Landsat sees all 7 continents! From Antarctic ice to growing cities to changing forests, Landsat measures land — and coastal regions — all around the globe.
Working in space is really hard. Landsat 6 never made it to orbit, an important reminder that failures can be opportunities to learn and grow. Shortly after the unsuccessful launch, engineers got to work on Landsat 7, which is still collecting data today — 22 years later.
We have 5 decades of Landsat observations, the longest continuous record of Earth’s land surfaces in existence! While building the original Landsat in the 1970s, it would have been hard to imagine that this mission would still be providing crucial data about our planet today.
For each color band collected, Landsat 9 will see 4 times the shades of light as the previous Landsat mission! With more than 16,000 different intensities detected, Landsat 9 will be able to see crucial details on our planet’s surface.
Our eyes detect 3 colors of light: red, green, and blue — and Landsat does too! But Landsat 9 also detects wavelengths that can be combined to measure things our eyes can’t, like crop stress, coral reef health, fires, and more.
There are 2 instruments on Landsat 9! The Operational Land Imager 2 collects light, and works kind of like our eyes — or cameras — to make data-rich images. The Thermal Infrared Sensor 2 measures temperature, helping monitor plant health, fires, and more.
The Landsat program is the result of 1 amazing partnership! For more than 50 years, we’ve worked with the U.S. Geological Survey to design, build, launch, and manage Landsat satellites.
Two agencies working together makes for the longest continuous record of Earth’s surfaces. Now, let’s launch this satellite!
Make sure to follow us on Tumblr for your regular dose of space!
Artemis is the first step in the next era of human exploration. This time when we go to the Moon, we're staying, to study and learn more than ever before. We’ll test new technologies and prepare for our next giant leap – sending astronauts to Mars.
Artemis missions will achieve many historic feats, like landing the first woman and first person of color on the Moon.
With today’s release of our graphic novel First Woman: NASA’s Promise for Humanity you don’t have to wait to join us on an inspiring adventure in space.
Meet Commander Callie Rodriguez, the first woman to explore the Moon – at least in the comic book universe.
In Issue No. 1: Dream to Reality, Callie, her robot sidekick RT, and a team of other astronauts are living and working on the Moon in the not-too-distant future. Like any good, inquisitive robot, RT asks Callie how he came to be – not just on the Moon after a harrowing experience stowed in the Orion capsule – but about their origin story, if you will.
From her childhood aspirations of space travel to being selected as an astronaut candidate, Callie takes us on her trailblazing journey to the Moon.
As they venture out to check on a problem at a lunar crater, Callie shares with RT and the crew that she was captivated by space as a kid, and how time in her father’s autobody shop piqued her interest in building things and going places.
Callie learned at a young age that knowledge is gained through both success and failure in the classroom and on the field.
Through disappointment, setbacks, and personal tragedy, Callie pursues her passions and eventually achieves her lifelong dream of becoming an astronaut – a road inspired by the real lives of many NASA astronauts living and working in space today.
Be a part of the adventure: read (or listen to) the full First Woman story and immerse yourself in a digital experience through our first-ever extended reality-enabled graphic novel.
Make sure to follow us on Tumblr for your regular dose of space!
After an extensive selection process, we chose the mountainous area west of Nobile Crater at the Moon’s South Pole as the landing site for our first-ever robotic Moon rover. The Volatiles Investigating Polar Exploration Rover, or VIPER, will explore the Moon’s surface and subsurface in search of water and other resources beginning in late 2023. Thanks to past missions, such as satellites orbiting the Moon or impacting its surface, we know there is ice at the Moon’s poles. But how much? And where did it come from? VIPER aims to answer these questions and more by venturing into shadowed craters and visiting other areas of scientific interest over its 100-day mission. The findings will inform future landing sites under the Artemis program and help pave the way toward establishing a long-term human presence on the Moon. Here are five things to know:
The VIPER mission is managed by our Ames Research Center in California's Silicon Valley. The approximately 1,000-pound rover will be delivered to the Moon by a commercial vendor as part of our Commercial Lunar Payload Services initiative, delivering science and technology payloads to and near the Moon.
Make sure to follow us on Tumblr for your regular dose of space.
A lot can change in five decades! How we talk, what we wear – it all evolves. But one thing that’s stayed consistent is our unique view of our home planet from above. Five decades ago, we at NASA partnered with United States Geological Survey (USGS) to launch a satellite called Landsat to see Earth from space. Now, we’re launching Landsat 9 – that’s right, the ninth in the series!
Join us for a road trip through the decades from the idea of an Earth-imaging satellite in the groovy 60s to the launch of Landsat 9 this year. Hop in!
Far out! In 1966, USGS proposed a satellite to image land all around our planet. Researchers worked with our scientists and engineers to design the satellite and figure out how it would work.
Here’s the lowdown: In 1970, we got approval to build the Earth Resources Technology Satellite, later renamed Landsat 1. The satellite launched in 1972 and provided the first digital data of Earth, repeated at regular intervals, which allows us to see changes as they happen.
In 1982, we launched Landsat 4, followed by Landsat 5 in 1984. These two satellites collected more wavelengths of light at higher precision, allowing for natural color images, which is totally radical, dude.
Wasssup, 1990s? Landsat 7 launched this decade, collecting even more data than previous Landsat satellites, enough to produce the first hi-res natural color map of remote Antarctica.
In 2008, our partners at USGS made all Landsat data available for free. This gave peeps around the world access to all the data they needed, unlocking innovation and creating economic benefits, like the ability to track crop health from space. Sweet!
In 2013, Landsat 8 began the modern era of Landsat observations. A new style of sensor and ground system made it possible to download much more and better data than ever before. Plus, a partnership with European Space Agency’s Sentinel-2 satellites gives even more regular observations. We heart that!
Now, we’re set to launch Landsat 9, a twin to Landsat 8. Two Landsat satellites with two instruments each will highkey change our view of Earth once again.
Now, on to the next 50 years of Earth observations! Stay tuned to watch Landsat 9 launch and start telling us even more about our home planet.
Make sure to follow us on Tumblr for your regular dose of space.
Feeling competitive? We’ve got a game for you to play in! Tournament Earth: The Landsat Games is happening right now, and as we get to the final entries, the competition is heating up.
You can help us pick the winner by voting for one of the remaining four Landsat images of our home planet! Our competition started with 32 images, divided into categories by what they show: land, water, ice & snow, and human impact.
So, what do you think? Which one of these images is going for gold?
First up, we have an image of the Markha River and surrounding Central Siberian Plateau, acquired in 2020 by Landsat 8. The hypnotic undulations of striping across the landscape carried this image to victory over the rest of the Land images -- a particularly tough category, given that these images all come from Landsat.
It’s not all land, though! The bright blues and greens of this false-color image of the Atchafalaya Delta in Louisiana helped carry it to victory in the Water category. The image, taken in 2020 by Landsat 8, shows a region that’s subject to erosion of land by wind and rising sea levels.
Brrr! Did it get cold in here? That’s the finalist from the Ice and Snow category, an image of sea ice around Russia’s New Siberian Islands. The image, collected by Landsat 8 in June 2016, shows sea ice during its annual seasonal breakup.
Humans have been shaping the planet around us for hundreds of years. Some changes, like rice fields in the Sacramento Valley, are visible from space. Landsat 8 collected this false-color image of flooded rice fields in December 2018.
So, now it’s up to you! Which image is your favorite? There can only be one winner of Tournament Earth: The Landsat Games. Get your vote in, and then get ready to watch as we launch the next Landsat satellite, Landsat 9, in September.
The Landsat mission is a partnership between us at NASA and the U.S. Geological Survey. Together, we’ve been using Landsat satellites to collect nearly 50 years of images of our home planet.
Make sure to follow us on Tumblr for your regular dose of space.
We can agree that nebulae are some of the most majestic-looking objects in the universe. But what are they exactly? Nebulae are giant clouds of gas and dust in space. They’re commonly associated with two parts of the life cycle of stars: First, they can be nurseries forming new baby stars. Second, expanding clouds of gas and dust can mark where stars have died.
Not all nebulae are alike, and their different appearances tell us what's happening around them. Since not all nebulae emit light of their own, there are different ways that the clouds of gas and dust reveal themselves. Some nebulae scatter the light of stars hiding in or near them. These are called reflection nebulae and are a bit like seeing a street lamp illuminate the fog around it.
In another type, called emission nebulae, stars heat up the clouds of gas, whose chemicals respond by glowing in different colors. Think of it like a neon sign hanging in a shop window!
Finally there are nebulae with dust so thick that we’re unable to see the visible light from young stars shine through it. These are called dark nebulae.
Our missions help us see nebulae and identify the different elements that oftentimes light them up.
The Hubble Space Telescope is able to observe the cosmos in multiple wavelengths of light, ranging from ultraviolet, visible, and near-infrared. Hubble peered at the iconic Eagle Nebula in visible and infrared light, revealing these grand spires of dust and countless stars within and around them.
The Chandra X-ray Observatory studies the universe in X-ray light! The spacecraft is helping scientists see features within nebulae that might otherwise be hidden by gas and dust when viewed in longer wavelengths like visible and infrared light. In the Crab Nebula, Chandra sees high-energy X-rays from a pulsar (a type of rapidly spinning neutron star, which is the crushed, city-sized core of a star that exploded as a supernova).
The James Webb Space Telescope will primarily observe the infrared universe. With Webb, scientists will peer deep into clouds of dust and gas to study how stars and planetary systems form.
The Spitzer Space Telescope studied the cosmos for over 16 years before retiring in 2020. With the help of its detectors, Spitzer revealed unknown materials hiding in nebulae — like oddly-shaped molecules and soot-like materials, which were found in the California Nebula.
Studying nebulae helps scientists understand the life cycle of stars. Did you know our Sun got its start in a stellar nursery? Over 4.5 billion years ago, some gas and dust in a nebula clumped together due to gravity, and a baby Sun was born. The process to form a baby star itself can take a million years or more!
After billions more years, our Sun will eventually puff into a huge red giant star before leaving behind a beautiful planetary nebula (so-called because astronomers looking through early telescopes thought they resembled planets), along with a small, dense object called a white dwarf that will cool down very slowly. In fact, we don’t think the universe is old enough yet for any white dwarfs to have cooled down completely.
Since the Sun will live so much longer than us, scientists can't observe its whole life cycle directly ... but they can study tons of other stars and nebulae at different phases of their lives and draw conclusions about where our Sun came from and where it's headed. While studying nebulae, we’re seeing the past, present, and future of our Sun and trillions of others like it in the cosmos.
To keep up with the most recent cosmic news, follow NASA Universe on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space.
Credit: NASA/Bill Ingalls
The Perseids meteor shower is here! It's one of the biggest of the year, and will peak early in the morning on Thursday, August 12, 2021 and Friday, August 13, 2021. To spot them, find a dark area away from bright lights (yes, that includes your phone), and let your eyes acclimate to the night sky. But don't worry – if you can't get away from lights, join us on Facebook, Twitter, and YouTube for a meteor shower livestream hosted by our Marshall Space Flight Center's Meteoroid Environment Office. Get all the details on our Watch the Skies blog.
Make sure to follow us on Tumblr for your regular dose of space.
Do you ever look up at the night sky and get lost in the stars? Maybe while you’re stargazing, you spot some of your favorite constellations. But did you know there’s more to constellations than meets the eye? They’re not just a bunch of imaginary shapes made up of stars — constellations tell us stories about the universe from our perspective on Earth.
A constellation is a named pattern of stars that looks like a particular shape. Think of it like connecting the dots. If you join the dots — stars, in this case — and use your imagination, the picture would look like an object, animal, or person. For example, the ancient Greeks believed an arrangement of stars in the sky looked like a giant hunter with a sword attached to his belt, so they named it after a famous hunter in their mythology, Orion. It’s one of the most recognizable constellations in the night sky and can be seen around the world. The easiest way to find Orion is to go outside on a clear night and look for three bright stars close together in an almost-straight line. These three stars represent Orion's belt. Two brighter stars to the north mark his shoulders, and two more to the south represent his feet.
Credit: NASA/STScI
Over time, cultures around the world have had different names and numbers of constellations depending on what people thought they saw. Today, there are 88 officially recognized constellations. Though these constellations are generally based on what we can see with our unaided eyes, scientists have also invented unofficial constellations for objects that can only be seen in gamma rays, the highest-energy form of light.
The stars in constellations may look close to each other from our point of view here on Earth, but in space they might be really far apart. For example, Alnitak, the star at the left side of Orion's belt, is about 800 light-years away. Alnilam, the star in the middle of the belt, is about 1,300 light-years away. And Mintaka, the star at the right side of the belt, is about 900 light-years away. Yet they all appear from Earth to have the same brightness. Space is three-dimensional, so if you were looking at the stars that make up the constellation Orion from another part of our galaxy, you might see an entirely different pattern!
Now that we know a little bit more about constellations, let’s talk about the supercool cosmic objects that form them – stars! Though over a dozen stars make up Orion, two take center stage. The red supergiant Betelgeuse (Orion's right shoulder) and blue supergiant Rigel (Orion's left foot) stand out as the brightest members in the constellation.
Credit: Derrick Lim
Betelgeuse is a young star by stellar standards, about 10 million years old, compared to our nearly 5 billion-year-old Sun. The star is so huge that if it replaced the Sun at the center of our solar system, it would extend past the main asteroid belt between Mars and Jupiter! But due to its giant mass, it leads a fast and furious life.
Betelgeuse is destined to end in a supernova blast. Scientists discovered a mysterious dimming of Betelgeuse in late 2019 caused by a traumatic outburst that some believed was a precursor to this cosmic event. Though we don’t know if this incident is directly related to an imminent supernova, there’s a tiny chance it might happen in your lifetime. But don't worry, Betelgeuse is about 550 light-years away, so this event wouldn't be dangerous to us – but it would be a spectacular sight.
Rigel is also a young star, estimated to be 8 million years old. Like Betelgeuse, Rigel is much larger and heavier than our Sun. Its surface is thousands of degrees hotter than Betelgeuse, though, making it shine blue-white rather than red. These colors are even noticeable from Earth. Although Rigel is farther from Earth than Betelgeuse (about 860 light-years away), it is intrinsically brighter than its companion, making it the brightest star in Orion and one of the brightest stars in the night sky.
Credit: Rogelio Bernal Andreo
Some dots that make up constellations are actually more than one star, but from a great distance they look like a single object. Remember Mintaka, the star at the far right side of Orion's belt? It is not just a single star, but actually five stars in a complex star system.
Credit: X-ray: NASA/CXC/GSFC/M. Corcoran et al.; Optical: Eckhard Slawik
Below the three bright stars of Orion’s belt lies his sword, where you can find the famous Orion Nebula. The nebula is only 1,300 light-years away, making it the closest large star-forming region to Earth. Because of its brightness and prominent location just below Orion’s belt, you can actually spot the Orion Nebula from Earth! But with a pair of binoculars, you can get a much more detailed view of the stellar nursery. It’s best visible in January and looks like a fuzzy “star” in the middle of Orion’s sword.
In addition to newborn stars, Orion also has some other awesome cosmic objects hanging around. Scientists have discovered exoplanets, or planets outside of our solar system, orbiting stars there. One of those planets is a giant gas world three times more massive than Jupiter. It’s estimated that on average there is at least one planet for every star in our galaxy. Just think of all the worlds you may be seeing when you look up at the night sky!
It’s also possible that the Orion Nebula might be home to a black hole, making it the closest known black hole to Earth. Though we may never detect it, because no light can escape black holes, making them invisible. However, space telescopes with special instruments can help find black holes. They can observe the behavior of material and stars that are very close to black holes, helping scientists find clues that can lead them closer to discovering some of these most bizarre and fascinating objects in the cosmos.
Next time you go stargazing, remember that there’s more to the constellations than meets the eye. Let them guide you to some of the most incredible and mysterious objects of the cosmos — young stars, brilliant nebulae, new worlds, star systems, and even galaxies!
To keep up with the most recent stellar news, follow NASA Universe on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space!