Dive Deep into Creativity: Discover, Share, Inspire
Hello. As the moon is moving farther from the earth, we will some day have no more solar eclipses. When will this happen?
Yup someday (I believe in about 650 million years) the moon will be too far away for solar eclipses to occur. We’re actually quite lucky that we get to see them at all. Not all planets get to experience eclipses.
Will ordinary sunglasses suffice?
Unfortunately not. Sunglasses are not sufficient to ever look directly at the Sun. You can find glasses and filters that are safe here https://eclipse2017.nasa.gov/safety And if you can’t find any that will get to you in time for the eclipse on Monday (you can always use them to look at the Sun at a later time to see sunspots), you can make a pin hole projector! https://eclipse.aas.org/eye-safety/projection I think those are fantastic fun!
The total solar eclipse is coming! Here’s your chance to ask an eclipse scientist your questions! Have questions about the upcoming total solar eclipse on August 21? Join our Tumblr Answer Time session on Thursday, August 17 from 3:00 – 4:00 p.m. EDT/12:00 - 1:00 p.m. PDT. here on NASA’s Tumblr, where space physics researcher Alexa Halford will answer them. Make sure to ask your questions now by visiting: https://nasa.tumblr.com/ask!
Alexa Halford is a space physics researcher at our Goddard Space Flight Center and Dartmouth College. She started researching waves in Earth's magnetosphere as an undergraduate at Augsburg College with Mark Engebretson using ground based magnetometers in the Arctic and Antarctic. She moved away from waves to focus on geomagnetic storms and substorms during her masters at the University of Colorado Boulder with Dan Baker but returned once more to waves with her PhD at University of Newcastle NSW Australia. Her PhD thesis was on Electromagnetic Ion Cyclotron (EMIC) waves during the CRRES mission and their relationship to the plasmasphere and radiation belts.
She is member of the scientific team for a NASA-funded scientific balloon experiment project called BARREL (Balloon Array for RBSP Relativistic Electron Losses) where she looks at the population of particles lost due to these interactions. She is now currently a contractor at NASA Goddard continuing work the BARREL and NASA Van Allen Probes satellite missions.
To get more information about the eclipse, visit: https://eclipse2017.nasa.gov/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On Aug. 21, 2017, everyone in North America will have the chance to see a solar eclipse if skies are clear. We’re giving you a preview of what you’ll see, how to watch and why scientists are particularly excited for this eclipse.
On Aug. 21, within a narrow band stretching from Oregon to South Carolina – called the path of totality – the Moon will completely obscure the Sun, giving people on the ground a view of the total solar eclipse. Outside this path – throughout North America, and even in parts of South America – the Moon will block only a portion of the Sun’s face, creating a partial solar eclipse.
Image credit: T. Ruen
Eclipses happen when the Moon, Sun and Earth line up just right, allowing the Moon to cast its shadow on Earth. Because the Moon’s orbit is tilted with respect to the Sun-Earth plane, its shadow usually passes above or below Earth. But when they all line up and that shadow falls on Earth, we get a solar eclipse.
It’s never safe to look directly at the un-eclipsed or partially eclipsed Sun – so you’ll need special solar viewing glasses or an indirect viewing method, like pinhole projection, to watch at the eclipse.
If you’re using solar viewing glasses or a handheld solar filter, there are a few important safety tips to keep in mind:
Check a few key characteristics to make sure that you have proper solar filters – sunglasses (even very dark ones) or homemade filters are NOT safe
Double-check that your solar filter is not scratched or damaged before you use it
Always put your solar filter over your eyes before looking up at the Sun, and look away from the Sun before removing it
Do NOT use your solar filter while looking through telescopes, binoculars, or any other optical device, such as a camera viewfinder – the concentrated solar rays will damage the filter and enter your eyes, causing serious injury
Get all the details on safety at eclipse2017.nasa.gov/safety.
No solar viewing glasses? Pinhole projection is an easy and safe way to watch the eclipse. You can create a pinhole projector from a box, or simply use any object with tiny holes – like a colander or a piece of cardstock with a hole – to project an image of the Sun onto the ground or a piece of paper.
If you are in the path of totality, there will come a time when the Moon completely obscures the Sun’s bright face. This is called totality, and it is only during this phase – which may last only a few seconds, depending on your location – that it is safe to look directly at the eclipse.
Wherever you are, you can tune into nasa.gov/eclipselive throughout the day on Aug. 21 to hear from our experts and see the eclipse like never before – including views from our spacecraft, aircraft, and more than 50 high-altitude balloons.
Total solar eclipses provide a unique opportunity to study the Sun and Earth. During a total eclipse, the lower parts of the Sun's atmosphere, or corona, can be seen in a way that cannot completely be replicated by current human-made instruments.
The lower part of the corona is key to understanding many processes on the Sun, including why the Sun’s atmosphere is so much hotter than its surface and the origins of the Sun’s constant stream of solar material and radiation – which can cause changes in the nature of space and impact spacecraft, communications systems, and orbiting astronauts.
Photo credit: S. Habbal, M. Druckmüller and P. Aniol
For those in the path of totality, the few moments of the total solar eclipse will reveal the Sun’s atmosphere, the corona.
Total solar eclipses are also a chance to study Earth under uncommon conditions: In contrast to the global change in light that occurs every day at dusk and dawn, a solar eclipse changes illumination of Earth and its atmosphere only under a comparatively small region of the Moon’s shadow. This localized blocking of solar energy is useful in evaluating our understanding of the Sun’s effects – temperature, for example – on our atmosphere. Of particular interest is the impact on Earth’s upper atmosphere, where solar illumination is primarily responsible for the generation of a layer of charged particles called the ionosphere.
We’re also inviting eclipse viewers around the country to become citizen scientists and participate in a nationwide science experiment by collecting cloud and air temperature data and reporting it via the GLOBE Observer smartphone app.
For more eclipse info, visit eclipse2017.nasa.gov and follow @NASASun on Twitter and NASA Sun Science on Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Just two months from now, the moon will completely block the sun’s face, treating part of the US to a total solar eclipse.
Everyone in North America will have the chance to see an eclipse of some kind if skies are clear. Anyone within a 70-mile-wide swath of land — called the path of totality — that stretches from Oregon to South Carolina will have the chance to see a total eclipse.
Throughout the rest of the continent, including all 50 United States — and even in parts of South America, Africa, Europe, and Asia — the moon will partially obscure the sun, creating a partial eclipse.
Photo credit: NASA/Cruikshank
An eclipse is one of nature’s most awesome sights, but safety comes first! When any part of the sun’s surface is exposed, use proper eclipse glasses (not sunglasses) or an indirect viewing method, like a pinhole projector. In the path of totality, it’s safe to look directly at the eclipse ONLY during the brief moments of totality.
During a solar eclipse, the moon passes between the sun and Earth, casting a shadow down on Earth’s surface. We’ve been studying the moon with NASA’s Lunar Reconnaissance Orbiter, and its precise mapping helped NASA build the most accurate eclipse map to date.
During a total solar eclipse, the moon blocks out the sun’s bright face, revealing the otherwise hidden solar atmosphere, called the corona. The corona is one of the sun’s most interesting regions — key to understanding the root of space weather events that shape Earth’s space environment, and mysteries such as why the sun’s atmosphere is so much hotter than its surface far below.
This is the first time in nearly 100 years that a solar eclipse has crossed the United States from coast to coast. We’re taking advantage of this long eclipse path by collecting data that’s not usually accessible — including studying the solar corona, testing new corona-observing instruments, and tracking how our planet’s atmosphere, plants, and animals respond to the sudden loss of light and heat from the sun.
We’ll be studying the eclipse from the ground, from airplanes, with research balloons, and of course, from space.
Three of our sun-watchers — the Solar Dynamics Observatory, IRIS, and Hinode, a joint mission led by JAXA — will see a partial eclipse from space. Several of our Earth-observing satellites will use the eclipse to study Earth under uncommon conditions. For example, both Terra and DSCOVR, a joint mission led by NOAA, will capture images of the moon’s shadow from space. Our Lunar Reconnaissance Orbiter will also turn its instruments to face Earth and attempt to track the moon’s shadow as it moves across the planet.
There’s just two months to go until August 21, so make your plans now for the big day! No matter where you are, you can follow the eclipse as it crosses the country with live footage from NASA TV.
Learn more about the upcoming total solar eclipse — including where, when, and how to safely experience it — at eclipse2017.nasa.gov and follow along on Twitter @NASASun.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com