Robert McCall
NASA
Why was James Webb Space Telescope designed to observe infrared light? How can its images hope to compare to those taken by the (primarily) visible-light Hubble Space Telescope? The short answer is that Webb will absolutely capture beautiful images of the universe, even if it won’t see exactly what Hubble sees. (Spoiler: It will see a lot of things even better.)
The James Webb Space Telescope, or Webb, is our upcoming infrared space observatory, which will launch in 2019. It will spy the first luminous objects that formed in the universe and shed light on how galaxies evolve, how stars and planetary systems are born, and how life could form on other planets.
What is infrared light?
This may surprise you, but your remote control uses light waves just beyond the visible spectrum of light—infrared light waves—to change channels on your TV.
Infrared light shows us how hot things are. It can also show us how cold things are. But it all has to do with heat. Since the primary source of infrared radiation is heat or thermal radiation, any object that has a temperature radiates in the infrared. Even objects that we think of as being very cold, such as an ice cube, emit infrared.
There are legitimate scientific reasons for Webb to be an infrared telescope. There are things we want to know more about, and we need an infrared telescope to learn about them. Things like: stars and planets being born inside clouds of dust and gas; the very first stars and galaxies, which are so far away the light they emit has been stretched into the infrared; and the chemical fingerprints of elements and molecules in the atmospheres of exoplanets, some of which are only seen in the infrared.
In a star-forming region of space called the ‘Pillars of Creation,’ this is what we see with visible light:
And this is what we see with infrared light:
Infrared light can pierce through obscuring dust and gas and unveil a more unfamiliar view.
Webb will see some visible light: red and orange. But the truth is that even though Webb sees mostly infrared light, it will still take beautiful images. The beauty and quality of an astronomical image depends on two things: the sharpness of the image and the number of pixels in the camera. On both of these counts, Webb is very similar to, and in many ways better than, Hubble. Webb will take much sharper images than Hubble at infrared wavelengths, and Hubble has comparable resolution at the visible wavelengths that Webb can see.
Webb’s infrared data can be translated by computer into something our eyes can appreciate – in fact, this is what we do with Hubble data. The gorgeous images we see from Hubble don’t pop out of the telescope looking fully formed. To maximize the resolution of the images, Hubble takes multiple exposures through different color filters on its cameras.
The separate exposures, which look black and white, are assembled into a true color picture via image processing. Full color is important to image analysis of celestial objects. It can be used to highlight the glow of various elements in a nebula, or different stellar populations in a galaxy. It can also highlight interesting features of the object that might be overlooked in a black and white exposure, and so the images not only look beautiful but also contain a lot of useful scientific information about the structure, temperatures, and chemical makeup of a celestial object.
This image shows the sequences in the production of a Hubble image of nebula Messier 17:
Here’s another compelling argument for having telescopes that view the universe outside the spectrum of visible light – not everything in the universe emits visible light. There are many phenomena which can only be seen at certain wavelengths of light, for example, in the X-ray part of the spectrum, or in the ultraviolet. When we combine images taken at different wavelengths of light, we can get a better understanding of an object, because each wavelength can show us a different feature or facet of it.
Just like infrared data can be made into something meaningful to human eyes, so can each of the other wavelengths of light, even X-rays and gamma-rays.
Below is an image of the M82 galaxy created using X-ray data from the Chandra X-ray Observatory, infrared data from the Spitzer Space Telescope, and visible light data from Hubble. Also note how aesthetically pleasing the image is despite it not being just optical light:
Though Hubble sees primarily visible light, it can see some infrared. And despite not being optimized for it, and being much less powerful than Webb, it still produced this stunning image of the Horsehead Nebula.
It’s a big universe out there – more than our eyes can see. But with all the telescopes now at our disposal (as well as the new ones that will be coming online in the future), we are slowly building a more accurate picture. And it’s definitely a beautiful one. Just take a look…
…At this Spitzer infrared image of a shock wave in dust around the star Zeta Ophiuchi.
…this Spitzer image of the Helix Nebula, created using infrared data from the telescope and ultraviolet data from the Galaxy Evolution Explorer.
…this image of the “wing” of the Small Magellanic Cloud, created with infrared data from Spitzer and X-ray data from Chandra.
…the below image of the Milky Way’s galactic center, taken with our flying SOFIA telescope. It flies at more than 40,000 feet, putting it above 99% of the water vapor in Earth’s atmosphere– critical for observing infrared because water vapor blocks infrared light from reaching the ground. This infrared view reveals the ring of gas and dust around a supermassive black hole that can’t be seen with visible light.
…and this Hubble image of the Mystic Mountains in the Carina Nebula.
Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.
Image Credits Eagle Nebula: NASA, ESA/Hubble and the Hubble Heritage Team Hubble Image Processing - Messier 17: NASA/STScI Galaxy M82 Composite Image: NASA, CXC, JHU, D.Strickland, JPL-Caltech, C. Engelbracht (University of Arizona), ESA, and The Hubble Heritage Team (STScI/AURA) Horsehead Nebula: NASA, ESA, and The Hubble Heritage Team (STScI/AURA) Zeta Ophiuchi: NASA/JPL-Caltech Helix Nebula: NASA/JPL-Caltech Wing of the Small Magellanic Cloud X-ray: NASA/CXC/Univ.Potsdam/L.Oskinova et al; Optical: NASA/STScI; Infrared: NASA/JPL-Caltech Milky Way Circumnuclear Ring: NASA/DLR/USRA/DSI/FORCAST Team/ Lau et al. 2013 Mystic Mountains in the Carina Nebula: NASA/ESA/M. Livio & Hubble 20th Anniversary Team (STScI)
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Os 4 planetas alinhados no horizonte de Utah. By Richard Keele
Falta 1 mês pra sonda Juno chegar em Júpiter. Comecei uma série no canal para explicar a missão. O primeiro vídeo já está no ar - https://youtu.be/qjxJ12IB4MQ
A constelação do Cruzeiro do Sul, também conhecida como Crux, é uma das constelações mais conhecidas do hemisfério sul celeste. [...]
O Cruzeiro do Sul tem algumas estrelas que se destacam: A mais brilhante é Acrux (também conhecida como Alfa Crucis ou ainda como Estrela de Magalhães), com magnitude aparente de +0,81; Becrux (também conhecida por Beta Crucis ou ainda por Mimosa); Gacrux (Gama Crucis ou ainda Rubídea); Pálida (ou Delta Crucis) e Intrometida (ou Épsilon Crucis).
Esta constelação tem ainda outros objetos celestes bem interessantes. É o caso da NGC 4755, conhecida como “Caixa de Joias“, sendo este um aglomerado estelar aberto; nesta constelação está também a Nebulosa do Saco de Carvão. [...]
Esta foto foi tirada sob um céu nebuloso, fazendo com que as estrelas se tornassem grandes esferas brilhantes. [...]
📸 Créditos da imagem:
[1] https://upload.wikimedia.org/wikipedia/commons/c/cc/Deep_Crux_wide_field_with_fog.jpg
[2] http://www.iceinspace.com.au/forum/showthread.php?t=89854
📚 Créditos do texto:
[1] https://pt.wikipedia.org/wiki/Crux 2/11
[2] http://www.iau.org/public/constellations/#cru
[3] https://www.siteastronomia.com/cruzeiro-do-sul-constelacao
A Origem das FRBs - Fast Radio Bursts - Space Today TV Ep.1070
Talvez um dos maiores mistérios da astronomia possa estar perto de ser solucionado.
Quem lembra do meu vídeo de retrospectiva de 2017 deve lembrar que eu falei que o ano de 2017 foi um ano interessante para um fenômeno conhecido como FRBs, ou Fast Radio Bursts.
Esses fenômenos são explosões rápidas que acontecem no comprimento de onda de ondas de rádio, são fenômenos raros de serem observados e muito intrigantes.
Chegou-se até a pensar que poderiam ser sinais emitidos por civilizações extra-terrestres.
Um desses fenômenos é especial, e é conhecido como FRB121102.
É um evento de FRB que se repete, mais de 200 explosões de alta energia foram registradas desse único evento.
Em 2017 os pesquisadores conseguiram publicar qual é a origem desse evento, uma região de formação de estrelas numa galáxia anã, localizada a cerca de 3 bilhões de anos-luz de distância da Terra.
Embora a localização tenha sido descoberta, o mistério ainda residia sobre a origem.
O que causa um evento desses?
Um grupo de pesquisadores resolveu então estudar os sinais recebidos desse evento de FRB e descobriram algo interessante, que essa explosão tinha uma propriedade conhecida como polarização.
E esse efeito de polarização permitiu que os astrônomos estudassem o ambiente da fonte que gerou essa FRB.
O ambiente da FRB 121102 possui um campo magnético intenso em um plasma de grande densidade.
Isso foi possível descobrir pois a polarização sofreu uma perturbação muito intensa, perturbação essa que é causada pela presença de um campo magnético muito forte.
Sabendo também que a duração das explosões dessa FRB varia de 30 microssegundos a 9 milissegundos, os astrônomos integraram essas informações e chegaram à seguinte conclusão.
A fonte é pequena, com cerca de 10 km de diâmetro, mas que é extremamente densa e que gera um campo magnético intenso.
Isso se encaixa muito bem em estrelas de nêutrons.
Ou uma magentar interagindo com a nebulosa de material expelido pela estrela original.
Ou até mesmo um pulsar.
O mecanismo exato não é conhecido ainda, mas uma coisa é certa, o ambiente onde a FRB foi gerada é único e pode indicar um novo tipo de objeto ou uma nova interação entre dois objetos densos e altamente magnetizados.
Assim, um dos grandes mistérios da astronomia está aos poucos sendo completamente entendido o que é muito importante para entendermos o funcionamento do universo.
A China lançou com sucesso um satélite de comunicação lunar, desenvolvido para ajudar na missão histórica que o país lançará ainda em 2018 de colocar um lander e um rover no lado distante (escuro, oculto) da Lua. Além de servir como relay de dados, esse satélite ainda fará experimentos astronômicos.
O satélite de relay da Chang’e-4, está sendo acompanhado por dois microssatélites, e tudo isso foi lançado a bordo de um foguete Long March 4C direto do Xichang Satellite Launch Centre, às 18:28 hora de Brasília, desse domingo, dia 20 de Maio de 2018.
A sonda foi inserida com sucesso na órbita de transferência lunar e se separou do estágio superior de seu foguete. O China Aerospace Science and Technology Corporation, o CASC, o principal contratante para o programa espacial, confirmou o sucesso em menos de uma hora após o lançamento.
Chamado de Queqiao, o satélite está agora numa jornada de 8 a 9 dias até o segundo ponto de Lagrange do sistema Terra-Lua, conhecido como E-M L2, que fica entre 60 e 80 mil quilômetros além da Lua, ou seja, a quase meio milhão de quilômetros da Terra.
O principal objetivo da missão é fornecer um meio de comunicação para as operações de um lander e de um rover lunar que serão colocados no lado distante da Lua, algo que nunca foi testado antes.
Como a Lua é travada gravitacionalmente com a Terra, esse lado distante, nunca está voltado para a Terra. Pousar missões ali, requer um sistema de comunicação com base nesses satélites que fazem o relay dos dados e que sempre estarão com as estações em Terra e com o lander e rover na sua linha de visada.
O ponto E-M L2 que é gravitacionalmente estável irá fornecer essa posição e a órbita adequada para o satélite realizar a sua função.
Queqiao, irá fazer um sobrevoo lunar para ser lançado para seu destino além da Lua e usará seu próprio sistema de propulsão para entrar numa órbita halo ao redor do ponto de Lagrange.
Uma vez no seu ponto, o satélite de 448 kg CAST100, desenvolvido pela China Academy of Space Technology, a CAST, uma empresa fabricante de sondas que trabalha para o CASC, irá testar sua antena parabólica de 4.2 metros de diâmetro e todas as funções antes que a missão levando o lander e o rover chegue na Lua.
O satélite enviado hoje, marca a quinta missão lunar chinesa, contando os dois módulos orbitais, Chang’e-1 em 2007, o Chang’e-2 em 2010, o rover e lander lunar da missão Chang’e-3 de 2013, e uma missão teste de retorno de amostras da Lua em 2014.
Em 2019, a China irá lançar a missão Chang’e-5 para coletar 2 kg de amostras do solo lunar e mandar de volta para Terra.
O lançamento desse domingo, dia 20 de Maio de 2018, marcou o décimo quinto lançamento da China em 2018, lembrando que a China pretende fazer cerca de 40 lançamentos nesse ano, o que dá quase 1 lançamento por semana.
Além de ajudar nas missões que pousarão na Lua, o satélite também irá usar 3 antenas de 5 metros de diâmetro de monopólio que serão usadas para realizar uma astronomia de frequência muito baixa que é impossível de ser feita na Terra, devido à atmosfera do nosso planeta.
A Netherlands-China Low frequency Explorer, ou NCLE, desenvolvido pela Readbound University, e outros, irá tentar detectar um sinal de baixa frequência proveniente da era negra do universo, algo que aconteceu poucas centenas de milhões de anos após o Big Bang, antes das primeiras estrelas brilharem.
Outros objetivos, disse Marc Klein Wolt, da Readbound University, e líder de projeto do NCLE, incluem, pesquisas do Sistema Solar nessas frequências, além de agir como uma base para futuras missões.
Perguntado se o NCLE poderia também, apesar de não ser o objetivo científico da equipe, contribuir para a pesquisa por inteligência extraterrestre, Klein Wolt, disse que, “em princípio poderia, já que nós estamos abrindo uma nova janela para o universo, mas eu não estou esperando encontrar qualquer ET”.
Dois microssatélites, o Longjiang-1 e 2, também estavam a bordo do foguete chinês, e tentarão entrar numa órbita lunar altamente elíptica para realizar suas tarefas astronômicas.
Os satélites pesando 45 kg e com dimensões de 50x50x40 cm, desenvolvidos pelo Harbin Institute of Technology, o HIT, em Heilongjiang , usará antenas de 1 metro para testar radioastronomia de baixa frequência e um tipo de interferometria baseada no espaço.
Principalmente usado como uma verificação técnica para futuras missões, o par de pequenos satélites também está levando experimentos de rádio amadores, além de uma pequena câmera óptica desenvolvida pela Arábia Saudita.
A Chang’e-4 era considerada primeiramente como uma missão reserva da Chang’e-3 que levou o rover Yutu para tocar o solo do Mare Imbrium em 2013.
Como a missão foi realizada com sucesso, apesar de uma falha mecânica no Yutu, a sonda Chang’e-4 foi então confirmada como sendo a missão para o lado distante da Lua.
O alvo para que a Chang’e-4 pouse na Lua é dentro da cratera Von Kármán, que fica na Bacia Aitken do Polo Sul, uma área intrigante do ponto de vista científico, que pode oferecer uma grande ideia sobre a história e sobre o desenvolvimento tanto da Lua como do nosso Sistema Solar.
As câmeras na Chang’e-3 mandaram imagens espetaculares do Mare Imbrium, e o mesmo espera-se da Chang’e-4. A Chang’e-3 fez inúmeras descobertas com seus instrumentos, incluindo múltiplas camadas distintas na superfície, sugerindo que a Lua teve uma história geológica mais complexa do que se pensava anteriormente.
Imaginem o que uma missão no lado distante da Lua não pode nos revelar.
Fonte:
https://gbtimes.com/china-launches-queqiao-relay-satellite-to-support-change-4-lunar-far-side-landing-mission
Estudar a matéria escura é algo extremamente complicado, começa pelo fato de não sabermos muito bem o que ela é, mas que ela existe, existe.
Uma ideia para estudar a matéria escura é tentar observar o universo na grande escala, numa escala que vai além dos aglomerados de galáxias, por exemplo.
Com observações precisas em escala muito grande, pode-se começar a ter pistas sobre não o que é matéria escura, mas sim como ela se comporta.
Para realizar esse tipo de observação, os astrônomos contam hoje com o VST, o chamado Telescópio de Rastreio do VLT do ESO.
No estudo mais recente para se entender a matéria escura, o VST fez imagens de uma área do céu equivalente a 2200 vezes o tamanho da Lua e contendo cerca de 15 milhões de galáxias.
Ao analisar os resultados, os astrônomos encontraram algo surpreendente, um efeito conhecido como cisalhamento cósmico.
Para esse efeito existir a matéria tem que estar numa escala maior do que a de aglomerados de galáxias.
Basicamente, o cisalhamento cósmico, consiste de uma variante sutil do efeito de lente gravitacional, onde a radiação emitida por galáxias distantes se encontra ligeiramente distorcida pelo efeito gravitacional de enormes quantidade de matéria.
Essa descoberta surpreendeu os pesquisadores, pois isso indica que a matéria escura na rede cósmica é menos irregular, ou menos heterogênea do que se pensava anteriormente.
Esse resultado vai de encontro aos resultados obtidos pelo Planck, que é o observatório espacial que tem como objetivo estudar esse tipo de matéria no universo, de modo que os astrônomos terão que reformular parte do conhecimento sobre como surgiu o universo e como ele evoluiu nesses 14 bilhões de anos.
Além disso esse estudo tem um papel fundamental em entender cada vez mais sobre a matéria escura, que é muito difícil de ser detectada diretamente e sua existência só é inferida a partir do efeito que ela exerce sobre a matéria ordinária do universo.
Os astrônomos esperam que novos telescópios de rastreiam possam pesquisar o céu mais profundo que o VST e que novas missões espaciais possam melhorar os dados do Planck, para que possam compreender, literalmente o que o universo está tentando nos dizer.
(via https://www.youtube.com/watch?v=FADBRclJi4U)
This month you can catch a rare sight in the pre-dawn sky: five planets at once! If you look to the south (or to the north if you’re in the southern hemisphere) between about 5:30 and 6 a.m. local time you’ll see Mercury, Venus, Saturn, Mars and Jupiter lined up like jewels on a necklace. They’re beautiful in the sky, and even more fascinating when you look closely.
This week we’re taking a tour of the planets with recent information about each:
1. Artistic License
Craters on Mercury are named for writers and artists of all kinds. There are Tolstoy, Thoreau and Tolkien craters, for example, as well as those that bear the names of the Brontës, photographer Dorothea Lange and dancer Margot Fonteyn. See the complete roster of crater names HERE.
2. Lifting the Veil of Venus
A thick covering of clouds made Venus a mystery for most of human history. In recent decades, though, a fleet of robotic spacecraft has helped us peer past the veil and learn more about this world that is so like the Earth in some ways — and in some ways it’s near opposite.
3. Curious?
Have you ever wanted to drive the Mars Curiosity rover? You can take the controls using our Experience Curiosity simulation. Command a virtual rover as you explore the terrain in Gale Crater, all using real data and images from Mars. Try it out HERE.
4. Now That’s a Super Storm
Winter weather often makes headlines on Earth — but on Jupiter there’s a storm large enough to swallow our entire planet several times over. It’s been raging for at least three hundred years! Learn about the Great Red Spot HERE.
5. Ring Watcher
This week, the Cassini spacecraft will be making high-resolution observations of Saturn’s entrancing rings. This is a simulated look at Saturn, along with actual photos of the rings from the Cassini mission.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Comet C/2016 R2 (now with a biparted tail) passing California Nebula
by Ritzelmut
What would the future look like if people were regularly visiting to other planets and moons? These travel posters give a glimpse into that imaginative future. Take a look and choose your destination:
Our Voyager mission took advantage of a once-every-175-year alignment of the outer planets for a grand tour of the solar system. The twin spacecraft revealed details about Jupiter, Saturn, Uranus and Neptune – using each planet’s gravity to send them on to the next destination.
Our Mars Exploration Program seeks to understand whether Mars was, is, or can be a habitable world. This poster imagines a future day when we have achieved our vision of human exploration of the Red Planet and takes a nostalgic look back at the great imagined milestones of Mars exploration that will someday be celebrated as “historic sites.”
There’s no place like home. Warm, wet and with an atmosphere that’s just right, Earth is the only place we know of with life – and lots of it. Our Earth science missions monitor our home planet and how it’s changing so it can continue to provide a safe haven as we reach deeper into the cosmos.
The rare science opportunity of planetary transits has long inspired bold voyages to exotic vantage points – journeys such as James Cook’s trek to the South Pacific to watch Venus and Mercury cross the face of the sun in 1769. Spacecraft now allow us the luxury to study these cosmic crossings at times of our choosing from unique locales across our solar system.
Ceres is the closest dwarf planet to the sun. It is the largest object in the main asteroid belt between Mars and Jupiter, with an equatorial diameter of about 965 kilometers. After being studied with telescopes for more than two centuries, Ceres became the first dwarf planet to be explored by a spacecraft, when our Dawn probe arrived in orbit in March 2015. Dawn’s ongoing detailed observations are revealing intriguing insights into the nature of this mysterious world of ice and rock.
The Jovian cloudscape boasts the most spectacular light show in the solar system, with northern and southern lights to dazzle even the most jaded space traveler. Jupiter’s auroras are hundreds of times more powerful than Earth’s, and they form a glowing ring around each pole that’s bigger than our home planet.
The discovery of Enceladus’ icy jets and their role in creating Saturn’s E-ring is one of the top findings of the Cassini mission to Saturn. Further Cassini discoveries revealed strong evidence of a global ocean and the first signs of potential hydrothermal activity beyond Earth – making this tiny Saturnian moon one of the leading locations in the search for possible life beyond Earth.
Frigid and alien, yet similar to our own planet billions of years ago, Saturn’s largest moon, Titan has a thick atmosphere, organic-rich chemistry and surface shaped by rivers and lakes of liquid ethane and methane. Our Cassini orbiter was designed to peer through Titan’s perpetual haze and unravel the mysteries of this planet-like moon.
Astonishing geology and the potential to host the conditions for simple life making Jupiter’s moon Europa a fascinating destination for future exploration. Beneath its icy surface, Europa is believed to conceal a global ocean of salty liquid water twice the volume of Earth’s oceans. Tugging and flexing from Jupiter’s gravity generates enough heat to keep the ocean from freezing.
You can download free poster size images of these thumbnails here: http://www.jpl.nasa.gov/visions-of-the-future/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com