Even without a nervous system, they are able to learn about substances they encounter, retaining that knowledge and even communicating it to other slime moulds.
scientists are saying we have about three years before all climate change effects are completely irreversible (meaning we are absolutely FUCKED). that’s just to avoid the worst of it (yes, all this shit with the fires and hurricanes is NOT the worst of it). so, i made a quick list of things people can do to start reducing their energy use and in turn, reducing greenhouse gas emissions and what not! -line/hang dry clothing - dryers use so much energy as it is and switching to the actually makes your clothing last so much longer! aka less energy spent on manufacturing and shipping clothing. -eat less meat - when i say this, it’s not specifically for the save the animals idea, but that is a huge bonus! factories that slaughter, process, and package meat use an insane amount of energy (another reason to switch to local as much as possible!!) -use less hot water - wash clothes in cold water, take shorter showers (or cold ones if you can handle that) -switch to reusable grocery bags -efficient light bulbs -carpool, walk, ride a bike, public transit -unplug electronics not in use - don’t leave things charging for too long. unplug your tv when it’s not being used. 40% of an item’s energy use is spent when it’s on standby!! -buy only what you need (look into minimalism guys, it’s real neat and saves money) -recycle -get a reusable water bottle instead of buying cases of plastic bottles - i bought one at walmart for 98 cents and i use it every single day. -plant your own garden or start a community garden! -composting -maintain air in car tires for better gas mileage -drive instead of taking airplanes -buy used items if they’re in good condition - why spend $20 on a shirt that you can find at goodwill for $1? same goes for books, CDs, and pretty much anything! save money AND cut down on energy use! -yall know that saying “reduce, reuse, recycle” -most importantly: TALK TO PEOPLE ABOUT THIS ISSUE - i mean your friends, your family, your local government, everyone!! these are all small things and it’s just a start but if we can get everyone in on habits like these, we could reduce the population’s carbon footprint by SO MUCH! we don’t wanna end up like that movie wall-e guys. this is serious!!
Opens up new possibilities in tissue engineering and soft robotics
Scientists from Nanyang Technological University, Singapore (NTU Singapore) and Carnegie Mellon University (CMU) have found a way to direct the growth of hydrogel, a jelly-like substance, to mimic plant or animal tissue structure and shapes.
The team’s findings, published in Proceedings of the National Academy of Sciences today, suggest new applications in areas such as tissue engineering and soft robotics where hydrogel is commonly used. The team has also filed a patent at CMU and NTU.
In nature, plant or animal tissues are formed as new biomass is added to existing structures. Their shape is the result of different parts of those tissues growing at different rates.
Mimicking this behaviour of biological tissues in nature, the research team comprising CMU scientists Changjin Huang, David Quinn, K. Jimmy Hsia and NTU President-designate Prof Subra Suresh, showed that through manipulation of oxygen concentration, one can pattern and control the growth rate of hydrogels to create the desired complex 3D shapes.
Read more.
““One of the holy grails of biomaterials research has been working out a way to get skin to grow onto and attach to metals and plastics without the risk of infection. It looks like this design and technique may have solved the problem,” says Dr Stynes, who is researching his PhD at the University of Melbourne. “It could pave the way for fully implantable robotics, prosthetics, catheters, intravenous lines, and the reconstruction of surgical defects with artificial materials.” Professor Richard Page, Director of Orthopaedics and the Centre of Orthopaedic Research and Education at Barwon Health and Deakin University, said the ability of the scaffold to make the skin think it was growing on other skin is potentially a major finding.”
— Breaking the Skin Barrier Can Lead to Breakthroughs in Robotics to Human Interface
Like the crazy eye of the universe
The Hydrogen Atom
Roommate -> roomsister
November 28 2017
Afternoon study session at my university’s library with my astronaut friend @redplanet44 ☆
Should make a Webbinar about it
1. Our upcoming James Webb Space Telescope will act like a powerful time machine – because it will capture light that’s been traveling across space for as long as 13.5 billion years, when the first stars and galaxies were formed out of the darkness of the early universe.
2. Webb will be able to see infrared light. This is light that is just outside the visible spectrum, and just outside of what we can see with our human eyes.
3. Webb’s unprecedented sensitivity to infrared light will help astronomers to compare the faintest, earliest galaxies to today’s grand spirals and ellipticals, helping us to understand how galaxies assemble over billions of years.
Hubble’s infrared look at the Horsehead Nebula. Credit: NASA/ESA/Hubble Heritage Team
4. Webb will be able to see right through and into massive clouds of dust that are opaque to visible-light observatories like the Hubble Space Telescope. Inside those clouds are where stars and planetary systems are born.
5. In addition to seeing things inside our own solar system, Webb will tell us more about the atmospheres of planets orbiting other stars, and perhaps even find the building blocks of life elsewhere in the universe.
Credit: Northrop Grumman
6. Webb will orbit the Sun a million miles away from Earth, at the place called the second Lagrange point. (L2 is four times further away than the moon!)
7. To preserve Webb’s heat sensitive vision, it has a ‘sunshield’ that’s the size of a tennis court; it gives the telescope the equivalent of SPF protection of 1 million! The sunshield also reduces the temperature between the hot and cold side of the spacecraft by almost 600 degrees Fahrenheit.
8. Webb’s 18-segment primary mirror is over 6 times bigger in area than Hubble’s and will be ~100x more powerful. (How big is it? 6.5 meters in diameter.)
9. Webb’s 18 primary mirror segments can each be individually adjusted to work as one massive mirror. They’re covered with a golf ball’s worth of gold, which optimizes them for reflecting infrared light (the coating is so thin that a human hair is 1,000 times thicker!).
10. Webb is so sensitive, it could detect the heat signature of a bumblebee at the distance of the moon, and can see details the size of a US penny at the distance of about 40 km.
BONUS! Over 1,200 scientists, engineers and technicians from 14 countries (and more than 27 U.S. states) have taken part in designing and building Webb. The entire project is a joint mission between NASA and the European and Canadian Space Agencies. The telescope part of the observatory was assembled in the world’s largest cleanroom at our Goddard Space Flight Center in Maryland.
Webb is currently being tested at our Johnson Space Flight Center in Houston, TX.
Afterwards, the telescope will travel to Northrop Grumman to be mated with the spacecraft and undergo final testing. Once complete, Webb will be packed up and be transported via boat to its launch site in French Guiana, where a European Space Agency Ariane 5 rocket will take it into space.
Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
So the other night during D&D, I had the sudden thoughts that:
1) Binary files are 1s and 0s
2) Knitting has knit stitches and purl stitches
You could represent binary data in knitting, as a pattern of knits and purls…
You can knit Doom.
However, after crunching some more numbers:
The compressed Doom installer binary is 2.93 MB. Assuming you are using sock weight yarn, with 7 stitches per inch, results in knitted doom being…
3322 square feet
Factoring it out…302 people, each knitting a relatively reasonable 11 square feet, could knit Doom.
A new technique developed by MIT physicists could someday provide a way to custom-design multilayered nanoparticles with desired properties, potentially for use in displays, cloaking systems, or biomedical devices. It may also help physicists tackle a variety of thorny research problems, in ways that could in some cases be orders of magnitude faster than existing methods.
The innovation uses computational neural networks, a form of artificial intelligence, to “learn” how a nanoparticle’s structure affects its behavior, in this case the way it scatters different colors of light, based on thousands of training examples. Then, having learned the relationship, the program can essentially be run backward to design a particle with a desired set of light-scattering properties – a process called inverse design.
The findings are being reported in the journal Science Advances, in a paper by MIT senior John Peurifoy, research affiliate Yichen Shen, graduate student Li Jing, professor of physics Marin Soljacic, and five others.
Read more.
Moon dust could give astronauts permanent DNA damage, study finds
Moon dust clings to clothing and poses serious health risks to astronauts, a new study finds. Credit: NASA