scientists are saying we have about three years before all climate change effects are completely irreversible (meaning we are absolutely FUCKED). that’s just to avoid the worst of it (yes, all this shit with the fires and hurricanes is NOT the worst of it). so, i made a quick list of things people can do to start reducing their energy use and in turn, reducing greenhouse gas emissions and what not! -line/hang dry clothing - dryers use so much energy as it is and switching to the actually makes your clothing last so much longer! aka less energy spent on manufacturing and shipping clothing. -eat less meat - when i say this, it’s not specifically for the save the animals idea, but that is a huge bonus! factories that slaughter, process, and package meat use an insane amount of energy (another reason to switch to local as much as possible!!) -use less hot water - wash clothes in cold water, take shorter showers (or cold ones if you can handle that) -switch to reusable grocery bags -efficient light bulbs -carpool, walk, ride a bike, public transit -unplug electronics not in use - don’t leave things charging for too long. unplug your tv when it’s not being used. 40% of an item’s energy use is spent when it’s on standby!! -buy only what you need (look into minimalism guys, it’s real neat and saves money) -recycle -get a reusable water bottle instead of buying cases of plastic bottles - i bought one at walmart for 98 cents and i use it every single day. -plant your own garden or start a community garden! -composting -maintain air in car tires for better gas mileage -drive instead of taking airplanes -buy used items if they’re in good condition - why spend $20 on a shirt that you can find at goodwill for $1? same goes for books, CDs, and pretty much anything! save money AND cut down on energy use! -yall know that saying “reduce, reuse, recycle” -most importantly: TALK TO PEOPLE ABOUT THIS ISSUE - i mean your friends, your family, your local government, everyone!! these are all small things and it’s just a start but if we can get everyone in on habits like these, we could reduce the population’s carbon footprint by SO MUCH! we don’t wanna end up like that movie wall-e guys. this is serious!!
"Who is afraid of Super Woolf?"
A new study has revealed that compounds present in the Martian soil can wipe out whole bacterial cultures within minutes.
Researchers have had their suspicions over whether microorganisms can actually survive on the surface of the Red Planet, and now lab tests are spelling doom for any potential little green bacteria. And yeah, growing potatoes on Mars might be more difficult than we thought.
The problem here lies with perchlorates - chlorine-containing chemical compounds that we first detected on Mars back in 2008. These salty compounds are also what makes water on the Martian surface stay liquid, essentially turning it into brine.
Perchlorates are considered toxic for people, but they don’t necessarily pose a problem for microbes. And because they keep surface water liquid, on Mars the presence of these compounds could even be beneficial for life - or so we thought.
Researchers from the University of Edinburgh have now confirmed that when you pair the compounds with intense ultraviolet (UV) light exposure, things become grim for any life forms.
Continue Reading.
Two most important phenomens to live for: coffee and ISS in the space
On Earth, a double shot mocha latte with soymilk, low-fat whip and a caramel drizzle is just about as complicated as a cup of coffee gets. Aboard the International Space Station, however, even just a simple cup of black coffee presents obstacles for crew members.
Understanding how fluids behave in microgravity is crucial to bringing the joys of the coffee bean to the orbiting laboratory. Astronaut Don Pettit crafted a DIY space cup using a folded piece of overhead transparency film. Surface tension keeps the scalding liquid inside the cup, and the shape wicks the liquid up the sides of the device into the drinker’s mouth.
The Capillary Beverage investigation explored the process of drinking from specially designed containers that use fluid dynamics to mimic the effect of gravity. While fun, this study could provide information useful to engineers who design fuel tanks for commercial satellites!
The capillary beverage cup allows astronauts to drink much like they would on Earth. Rather than drinking from a shiny bag and straw, the cup allows the crew member to enjoy the aroma of the beverage they’re consuming.
On Earth, liquid is held in the cup by gravity. In microgravity, surface tension keeps the liquid stable in the container.
The ISSpresso machine brought the comforts of freshly-brewed coffees and teas to the space station. European astronaut Samantha Cristoforetti enjoyed the first cup of espresso brewed using the ISSpresso machine during Expedition 43.
Now, during Expedition 53, European astronaut Paolo Nespoli enjoys the same comforts.
Astronaut Kjell Lindgren celebrated National Coffee Day during Expedition 45 by brewing the first cup of hand brewed coffee in space.
We have a latte going on over on our Snapchat account, so give us a follow to stay up to date! Also be sure to follow @ISS_Research on Twitter for your daily dose of space station science.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
CRISP(ie)R news than anything!
A powerful technique for editing genomes is now more precise. By tweaking an enzyme, researchers have reduced the error rate for the technique, known as CRISPR–Cas9 — in some cases to undetectable levels, they report on 6 January in Nature1.
Researchers use CRISPR–Cas9 to make precise changes to genomes that remove or edit a faulty gene. It has worked on nearly every creature on which they have tested it, including human embryos.
The technique relies on an enzyme called Cas9, that uses a ‘guide RNA’ molecule to home in on its target DNA. Cas9 cuts the DNA at that site, and the cell’s natural DNA repair machinery then takes over to mend the cut — deleting a short fragment of DNA or stitching in a new sequence in the process.
But the technology is not infallible: sometimes the Cas9 enzyme creates unwanted mutations. As CRISPR inches out of the laboratory and towards the clinic — with debates raging overwhether it should be deployed in embryos — researchers have pushed to reduce the error rate.
The latest study moves the field closer to that goal, says lead author Keith Joung, a pathologist at Massachusetts General Hospital in Boston. “This is a significant move forward,” he says. “We can very much reduce the probability of off-targets.”
Continue Reading.
West Palm Beach FL (SPX) Jun 18, 2018 Aerojet Rocketdyne recently achieved a significant milestone by successfully completing a series of hot-fire tests of an advanced, next-generation RL10 engine thrust chamber design that was built almost entirely using additive manufacturing; commonly known as 3-D printing. “This recent series of hot-fire tests conducted under our RL10C-X development program demonstrated the large-scale add Full article
Space vehicles like SpaceX’s Falcon 9 are designed to be reusable. But this means that, like Olympic gymnasts hoping for a gold medal, they have to stick their landings.
Landing is stressful on a rocket’s legs because they must handle the force from the impact with the landing pad. One way to combat this is to build legs out of materials that absorb some of the force and soften the blow.
University of Washington researchers have developed a novel solution to help reduce impact forces – for potential applications in spacecraft, cars and beyond. Inspired by the paper folding art of origami, the team created a paper model of a metamaterial that uses “folding creases” to soften impact forces and instead promote forces that relax stresses in the chain. The team published its results May 24 in Science Advances.
“If you were wearing a football helmet made of this material and something hit the helmet, you’d never feel that hit on your head. By the time the energy reaches you, it’s no longer pushing. It’s pulling,” said corresponding author Jinkyu Yang, a UW associate professor of aeronautics and astronautics.
Read more.
Printing microelectrode arrays on gelatin and other soft materials could pave the way for new medical diagnostics tools
Microelectrodes can be used for direct measurement of electrical signals in the brain or heart. These applications require soft materials, however. With existing methods, attaching electrodes to such materials poses significant challenges. A team at the Technical University of Munich (TUM) has now succeeded in printing electrodes directly onto several soft substrates.
Researchers from TUM and Forschungszentrum Jülich have successfully teamed up to perform inkjet printing onto a gummy bear. This might initially sound like scientists at play – but it may in fact point the way forward to major changes in medical diagnostics. For one thing, it was not an image or logo that Prof. Bernhard Wolfrum’s team deposited on the chewy candy, but rather a microelectrode array. These components, comprised of a large number of electrodes, can detect voltage changes resulting from activity in neurons or muscle cells, for example.
Second, gummy bears have a property that is important when using microelectrode arrays in living cells: they are soft. Microelectrode arrays have been around for a long time. In their original form, they consist of hard materials such as silicon. This results in several disadvantages when they come into contact with living cells. In the laboratory, their hardness affects the shape and organization of the cells, for example. And inside the body, the hard materials can trigger inflammation or the loss of organ functionalities.
Read more.
Many natural organisms have the ability to repair themselves. Now, manufactured machines will be able to mimic this property. In findings published this week in Nature Materials, researchers at Carnegie Mellon University have created a self-healing material that spontaneously repairs itself under extreme mechanical damage.
This soft-matter composite material is composed of liquid metal droplets suspended in a soft elastomer. When damaged, the droplets rupture to form new connections with neighboring droplets and reroute electrical signals without interruption. Circuits produced with conductive traces of this material remain fully and continuously operational when severed, punctured, or had material removed.
Keep reading
Every time you take a breath of fresh air, it’s easy to forget you can safely do so because of Earth’s atmosphere. Life on Earth could not exist without that protective cover that keeps us warm, allows us to breathe and protects us from harmful radiation—among other things.
1. On Earth, we live in the troposphere, the closest atmospheric layer to Earth’s surface. “Tropos” means “change,” and the name reflects our constantly changing weather and mixture of gases.
It’s 5 to 9 miles (8 to 14 kilometers) thick, depending on where you are on Earth, and it’s the densest layer of atmosphere. When we breathe, we’re taking in an air mixture of about 78 percent nitrogen, 21 percent oxygen and 1 percent argon, water vapor and carbon dioxide. More on Earth’s atmosphere›
2. Mars has a very thin atmosphere, nearly all carbon dioxide. Because of the Red Planet’s low atmospheric pressure, and with little methane or water vapor to reinforce the weak greenhouse effect (warming that results when the atmosphere traps heat radiating from the planet toward space), Mars’ surface remains quite cold, the average surface temperature being about -82 degrees Fahrenheit (minus 63 degrees Celsius). More on the greenhouse effect›
3. Venus’ atmosphere, like Mars’, is nearly all carbon dioxide. However, Venus has about 154,000 times more carbon dioxide in its atmosphere than Earth (and about 19,000 times more than Mars does), producing a runaway greenhouse effect and a surface temperature hot enough to melt lead. A runaway greenhouse effect is when a planet’s atmosphere and surface temperature keep increasing until the surface gets so hot that its oceans boil away. More on the greenhouse effect›
4. Jupiter likely has three distinct cloud layers (composed of ammonia, ammonium hydrosulfide and water) in its “skies” that, taken together, span an altitude range of about 44 miles (71 kilometers). The planet’s fast rotation—spinning once every 10 hours—creates strong jet streams, separating its clouds into dark belts and bright zones wrapping around the circumference of the planet. More on Jupiter›
5. Saturn’s atmosphere—where our Cassini spacecraft ended its 13 extraordinary years of exploration of the planet—has a few unusual features. Its winds are among the fastest in the solar system, reaching speeds of 1,118 miles (1,800 kilometers) per hour. Saturn may be the only planet in our solar system with a warm polar vortex (a mass of swirling atmospheric gas around the pole) at both the North and South poles. Also, the vortices have “eye-wall clouds,” making them hurricane-like systems like those on Earth.
Another uniquely striking feature is a hexagon-shaped jet streamencircling the North Pole. In addition, about every 20 to 30 Earth years, Saturn hosts a megastorm (a great storm that can last many months). More on Saturn›
6. Uranus gets its signature blue-green color from the cold methane gas in its atmosphere and a lack of high clouds. The planet’s minimum troposphere temperature is 49 Kelvin (minus 224.2 degrees Celsius), making it even colder than Neptune in some places. Its winds move backward at the equator, blowing against the planet’s rotation. Closer to the poles, winds shift forward and flow with the planet’s rotation. More on Uranus›
7. Neptune is the windiest planet in our solar system. Despite its great distance and low energy input from the Sun, wind speeds at Neptune surpass 1,200 miles per hour (2,000 kilometers per hour), making them three times stronger than Jupiter’s and nine times stronger than Earth’s. Even Earth’s most powerful winds hit only about 250 miles per hour (400 kilometers per hour). Also, Neptune’s atmosphere is blue for the very same reasons as Uranus’ atmosphere. More on Neptune›
8. WASP-39b, a hot, bloated, Saturn-like exoplanet (planet outside of our solar system) some 700 light-years away, apparently has a lot of water in its atmosphere. In fact, scientists estimate that it has about three times as much water as Saturn does. More on this exoplanet›
9. A weather forecast on “hot Jupiters”—blistering, Jupiter-like exoplanets that orbit very close to their stars—might mention cloudy nights and sunny days, with highs of 2,400 degrees Fahrenheit (about 1,300 degrees Celsius, or 1,600 Kelvin). Their cloud composition depends on their temperature, and studies suggest that the clouds are unevenly distributed. More on these exoplanets›
10. 55 Cancri e, a “super Earth” exoplanet (a planet outside of our solar system with a diameter between Earth’s and Neptune’s) that may be covered in lava, likely has an atmosphere containing nitrogen, water and even oxygen–molecules found in our atmosphere–but with much higher temperatures throughout. Orbiting so close to its host star, the planet could not maintain liquid water and likely would not be able to support life. More on this exoplanet›
Read the full version of this week’s Solar System 10 Things to Know HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What doesn't tear you makes you doper
Substitutional defects ( 2 ) are point defects in which an impurity atom takes the place of a native atom within the crystal lattice. Semiconductors often intentionally add substitional defects through doping, such as adding boron or phosphorous to silicon to create an n- or p-type semiconductor, and certain alloys include extraneous elements to create substitional defects for solution hardening purposes.
Image source.