Our Juno spacecraft was carefully designed to meet the tough challenges in flying a mission to Jupiter: weak sunlight, extreme temperatures and deadly radiation. Lets take a closer look at Juno:
It Rotates!
Roughly the size of an NBA basketball court, Juno is a spinning spacecraft. Cartwheeling through space makes the spacecraft’s pointing extremely stable and easy to control. While in orbit at Jupiter, the spinning spacecraft sweeps the fields of view of its instruments through space once for each rotation. At three rotations per minute, the instruments’ fields of view sweep across Jupiter about 400 times in the two hours it takes to fly from pole to pole.
It Uses the Power of the Sun
Jupiter’s orbit is five times farther from the sun than Earth’s, so the giant planet receives 25 times less sunlight than Earth. Juno will be the first solar-powered spacecraft we’ve designed to operate at such a great distance from the sun. Because of this, the surface area of the solar panels required to generate adequate power is quite large.
Three solar panels extend outward from Juno’s hexagonal body, giving the overall spacecraft a span of about 66 feet. Juno benefits from advances in solar cell design with modern cells that are 50% more efficient and radiation tolerant than silicon cells available for space missions 20 years ago. Luckily, the mission’s power needs are modest, with science instruments requiring full power for only about six out of each 11-day orbit.
It Has a Protective Radiation Vault
Juno will avoid Jupiter’s highest radiation regions by approaching over the north, dropping to an altitude below the planet’s radiation belts, and then exiting over the south. To protect sensitive spacecraft electronics, Juno will carry the first radiation shielded electronics vault, a critical feature for enabling sustained exploration in such a heavy radiation environment.
Gravity Science and Magnetometers – Will study Jupiter’s deep structure by mapping the planet’s gravity field and magnetic field.
Microwave Radiometer – Will probe Jupiter’s deep atmosphere and measure how much water (and hence oxygen) is there.
JEDI, JADE and Waves – These instruments will work to sample electric fields, plasma waves and particles around Jupiter to determine how the magnetic field is connected to the atmosphere, and especially the auroras (northern and southern lights).
JADE and JEDI
Waves
UVS and JIRAM – Using ultraviolet and infrared cameras, these instruments will take images of the atmosphere and auroras, including chemical fingerprints of the gases present.
UVS
JIRAM
JunoCam – Take spectacular close-up, color images.
Follow our Juno mission on the web, Facebook, Twitter, YouTube and Tumblr.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
A algum tempo eu trouxe aqui no canal um vídeo sobre a estrela HL Tauri, onde o ALMA tinha feito uma imagem espetacular sobre o disco de poeira ao redor da estrela, mostrando gaps, ou vazios, que poderiam estar relacionados com a presença de planetas recém formados.
Porém, os astrônomos não tinham chegado a uma resposta definitiva sobre o que eram os gaps no disco de poeira, muitos acreditavam que poderia sim ser as marcas da formação de planetas, porém outros contestavam essa teoria, principalmente pelo fato da HL Tauri ser uma estrela muito jovem, com cerca de um milhão de anos, e os astrônomos acreditavam que seria necessário pelo menos 10 milhões de anos para a formação de planetas.
Esses astrônomos sugeriram outros processos para a formação dos gaps, como a mudança no tamanho da poeira, por meio da aglutinação ou da destruição, ou até mesmo pela formação da poeira, pelo congelamento das moléculas gás.
Qual teoria está correta? A formação de planetas, ou a mudança na poeira?
Os astrônomos então foram adquirir novos dados, dessa vez, os astrônomos focaram na análise do gás ao redor da estrela para entender assim a natureza do disco. A ideia deles era a seguinte, se os gaps no disco de poeira fossem provocados pela variação na propriedade da poeira, isso não afetaria o gás diretamente, já se os gaps fossem formados pela gravidade de planetas em formação, isso também afetaria o gás, criando gaps no gás também.
Utilizando os dados públicos do ALMA de 2014 a equipe de astrônomos extraiu as emissões de moléculas de gás e utilizou uma nova técnica de processamento dos dados.
Aliando o processamento dos dados com as novas informações extraídas eles chegaram a conclusão de que existem também gaps no disco de gás, e esses gaps coincidem com os do disco de poeira. Isso suporta a ideia de que esses vazios no disco, são sim as marcas deixadas pela formação de planetas, e pelo fato dos vazios tanto no disco de poeira como no disco de gás se ajustarem tão bem, desfavorece muito a ideia de uma variação somente na poeira.
A HL Tauri possui dois gaps no seu disco, um mais interno e um mais externo. O mais interno provavelmente se deve à formação de um planeta com uma massa equivalente a 0.8 vezes a massa de Júpiter.
Enquanto que o gap externo pode ser que exista devido à formação de um planeta com uma massa equivalente a 2.1 vezes a massa de Júpiter. Porém os resultados para esse disco mais externo são carregados de muita incerteza, e novas informações serão necessárias para que se possa ter certeza do que está acontecendo ali.
Por enquanto, uma conclusão importante dessa pesquisa é que de acordo com os dados, a formação de planetas parece acontecer bem antes do que se previam nos modelos anteriormente. Com mais dados sobre esse tipo de disco e sobre esses gaps, se poderá ter certeza disso, e os modelos poderão então ser reescritos, para melhor representar a formação de planetas.
(via https://www.youtube.com/watch?v=UdxUGCezWOo)
Nesta fotografia a nossa casa galáctica, a Via Láctea, estende-se ao longo do céu por cima da paisagem dos Andes chilenos. Em primeiro plano, as estradas para o Observatório de La Silla do ESO encontram-se cravejadas de telescópios astronômicos de vanguarda que apontam na direção da Via Láctea. Vários telescópios multinacionais foram capturados nesta imagem. O telescópio de 3,6 metros do ESO aparece no pedestal central e é neste telescópio que está montado o instrumento High Accuracy Radial velocity Planet Searcher (HARPS) — o melhor “caçador” de exoplanetas no mundo. Junto à cúpula principal, encontra-se o Coudé Auxiliary Telescope (CAT), que era utilizado para alimentar um potente espectrógrafo Coudé Echelle; neste momento estão ambos desativados. No sopé do pequeno monte está o Rapid Action Telescope for Trasient Objects (TAROT) francês, que segue eventos altamente energéticos chamados explosões de raios gama. Estes fenômenos são também estudados pelotelescópio suíço de 1,2 metros Leonhard Euler instalado na cúpula à esquerda, embora o seu enfoque seja a busca de exoplanetas. Ao fundo à direita podemos ver ainda o Swedish-ESO Submillimetre Telescope (SEST) que foi desativado em 2003 e substituído pelo Atacama Pathfinder EXperiment (APEX), situado no planalto do Chajnantor. Um mapa com todas as instalações existentes em La Silla pode ser consultado neste link. A grande densidade de instrumentos nas estradas de La Silla mostram o quão desejável é este sítio para as observações astronômicas. O local encontra-se longe de cidades muito iluminadas — o efeito dramático de tênues luzes de freio de um único carro pode ser visto à esquerda — e a altitude elevada.
Fonte:
http://www.eso.org/public/brazil/images/potw1610a/
çõe@i�(l�
Pegue carona nessa cauda de cometa! !! Cometa Lovejoy fotografado pelos astronautas da Expedição 30 na ISS
O absurdo do Brasil…ah é mesmo, tem o legado da copa e nem se compara com as descobertas da New Horizons.
Foto da minha graduação em Física na Universidade do Estado do Amazonas (UEA) que ocorreu no dia 25 de agosto de 2016. (em Parintins)
Pôr do Sol! 🌅
📅 Data de registro: 5 de agosto de 2024 às 18:22
A fotografia desta semana mostra fitas de gás e poeira em torno do centro da galáxia espiral barrada NGC 1398. Esta galáxia situa-se na constelação da Fornalha, a aproximadamente 65 milhões de anos-luz de distância da Terra.
Em vez de começarem no meio da galáxia e espiralarem para o exterior, os braços em espiral da NGC 1398 têm origem numa barra direita, formada de estrelas, que corta a região central da galáxia. Uma grande parte das galáxias em espiral — cerca de dois terços — apresenta esta estrutura, no entanto ainda não é claro se e como é que estas barras afectam o comportamento e o desenvolvimento das suas galáxias.
Esta imagem foi criada a partir de dados obtidos pelo instrumento FORS2 (FOcal Reducer/low dispersion Spectrograph 2), montado no Very Large Telescope do ESO (VLT) no Observatório do Paranal, no Chile, e mostra a NGC 1398 em grande detalhe, dos escuros trilhos de poeira que sarapintam os braços em espiral às regiões de formação estelar em tons rosa que aparecem nas regiões mais externas.
A imagem foi criada no âmbito do programa Jóias Cósmicas do ESO, o qual visa obter imagens de objetos interessantes, intrigantes ou visualmente atrativos, utilizando os telescópios do ESO, para efeitos de educação e divulgação científica. O programa utiliza tempo de telescópio que não pode ser usado em observações científicas. Todos os dados obtidos podem ter igualmente interesse científico e são por isso postos à disposição dos astrónomos através do arquivo científico do ESO. Crédito da Imagem: ESO
26 de Abril de 2016 começa com Lua, planeta Saturno, planeta Marte, estrela Antares e chuva de meteoros Alfa-Escorpídeas. Um começo celeste bastante comemorativo! (em Parintins)
Exploration requires mobility. And whether you’re on Earth or as far away as the Moon or Mars, you need good tires to get your vehicle from one place to another. Our decades-long work developing tires for space exploration has led to new game-changing designs and materials. Yes, we’re reinventing the wheel—here’s why.
Early tire designs were focused on moving hardware and astronauts across the lunar surface. The last NASA vehicle to visit the Moon was the Lunar Roving Vehicle during our Apollo missions. The vehicle used four large flexible wire mesh wheels with stiff inner frames. We used these Apollo era tires as the inspiration for new designs using newer materials and technology to better function on a lunar surface.
During the mid-2000s, we worked with industry partner Goodyear to develop the Spring Tire, an airless compliant tire that consists of several hundred coiled steel wires woven into a flexible mesh, giving the tires the ability to support high loads while also conforming to the terrain. The Spring Tire has been proven to generate very good traction and durability in soft sand and on rocks.
A little over a year after the Mars Curiosity Rover landed on Mars, engineers began to notice significant wheel damage in 2013 due to the unexpectedly harsh terrain. That’s when engineers began developing new Spring Tire prototypes to determine if they would be a new and better solution for exploration rovers on Mars.
In order for Spring Tires to go the distance on Martian terrain, new materials were required. Enter nickel titanium, a shape memory alloy with amazing capabilities that allow the tire to deform down to the axle and return to its original shape.
After building the shape memory alloy tire, Glenn engineers sent it to the Jet Propulsion Laboratory’s Mars Life Test Facility. It performed impressively on the punishing track.
New, high performing tires would allow lunar and Mars rovers to explore greater regions of the surface than currently possible. They conform to the terrain and do not sink as much as rigid wheels, allowing them to carry heavier payloads for the same given mass and volume. Also, because they absorb energy from impacts at moderate to high speeds, there is potential for use on crewed exploration vehicles which are expected to move at speeds significantly higher than the current Mars rovers.
Maybe. Recently, engineers and materials scientists have been testing a spinoff tire version that would work on cars and trucks on Earth. Stay tuned as we continue to push the boundaries on traditional concepts for exploring our world and beyond.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Conjunction: Mars, Venus and Moon
by Stefan Grießinger