Dive Deep into Creativity: Discover, Share, Inspire
MAVEN, the Mars Atmospheric and Volatile Evolution, was the second mission selected for our Mars Scout program and the first to explore the planet’s upper atmosphere . It launched on November 18, 2013 and entered orbit around Mars on September 21, 2014.
+ MAVEN Quick Facts
This time-lapse sequence of Hubble Space Telescope images shows Jupiter’s moon Europa as it moved across the planet’s face over the course of 19 minutes. Europa is at the bottom center on Jupiter’s disk, the Great Red Spot to the left and Europa’s shadow to its right. The video was created by combining six snapshots taken in ultraviolet light with Hubble’s Wide Field Camera 3.
+ Learn more
Orionid shower peaks November 28. Look for the constellation Orion in the Southeast sky by 9 p.m. Using binoculars, look for the Orion Nebula.
Comet 45P/Honda-Mrkos-Pajdu áková will brighten to expected stunning binocular visibility in mid to late December, but is near Venus on November 23rd.
+ Track the Comet
A newly discovered “great valley” in the southern hemisphere of Mercury provides more evidence that the planet closest to the sun is shrinking. Using stereo images from our MESSENGER spacecraft to create a high-resolution map, scientists have discovered that revealed the broad valley – more than 620 miles (1,000 kilometers) long – extending into the Rembrandt basin, one of the largest and youngest impact basins on Mercury. About 250 miles (400 kilometers) wide and 2 miles (3 kilometers) deep, Mercury’s great valley is smaller than Mars’ Valles Marineris, but larger than North America’s Grand Canyon and wider and deeper than the Great Rift Valley in East Africa.
+ Learn more
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
New physics doesn’t always come from the recesses of space or the bowels of the Large Hadron Collider. Sometimes, you just need some cameras, a nickel bead, a magnet, and Petri dish popsicles.
Every once in a while, someone notices a big disc of ice eerily spinning in a river. These discs can be anywhere from 1 to 200 metres across, and almost everything about them has mystified physicists and environmental scientists for over a century. While it’s thought that this rare natural phenomenon is likely was caused by cold, dense air coming in contact with an eddy in a river, no one’s been able to definitively explain why these giant discs continue to rotate as they melt. Until now.
The most common explanation for the spinning ice discs says that as the discs float along in a river, they’re spun around by eddies - little spinning currents that form when water flows over rocks or into an enclosed space. And while this is this is probably part of what’s happening, it can’t be the whole story.